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Abstract

This paper deals with a formulation of nonlocal and gradient plasticity with internal variables. The constitutive
model complies with local internal variables which govern kinematic hardening and isotropic softening and with a
nonlocal corrective internal variable defined either as the sum between a new internal variable and its spatial weighted
average or as the gradient of a measure of plastic strain. The rate constitutive problem is cast in the framework provided
by the convex analysis and the potential theory for monotone multivalued operators which provide the suitable tools to
perform a theoretical analysis of such nonlocal and gradient problems. The validity of the maximum dissipation
theorem is assessed and constitutive variational formulations of the rate model are provided. The structural rate
problem for an assigned load rate is then formulated. The related variational formulation in the complete set of state
variable is contributed and the methodology to derive variational formulations, with different combinations of the state
variables, is explicitly provided. In particular the generalization to the present nonlocal and gradient model of the
principles of Prager-Hodge, Greenberg and Capurso—Maier is presented. Finally nonlocal variational formulations
provided in the literature are derived as special cases of the proposed model.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Nonlocal plasticity; Gradient plasticity; Internal variables; Strain localization; Variational formulations

1. Introduction

The increasing interest in generalizing continuum models of plasticity and damage has its origin in the
serious drawbacks of these classical theories when a strain softening behaviour is exhibited. In fact most
engineering materials, such as metals, concrete, fiber-reinforced materials and soils, show a loss of positive
definiteness of the tangent stiffness operator which yields to the localization of plastic deformations and of
damage in narrow bands until the occurrence of cracks appear.

The deformation pattern in a body in which a localization phenomenon occurs suddenly evolves from
relatively smooth into one in which shear bands of highly strained material appears whereas the remainder
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part of the body unloads. In classical theories of plasticity and damage the size of the localization zone is
unspecified due to the lack of any material internal length and, if the material does not have a residual
strength, the energy dissipated in the localized zone tends to zero as the mesh is refined (see e.g. Lasry and
Belytschko, 1988). Accordingly in a finite element analysis, the solution depends on the mesh size employed
since the localization band tends to the smallest finite element.

On the contrary, the presence of a length scale in plasticity theories reflects the ability of the micro-
structure to transmit information to neighbouring points within a certain distance and turns out to be a
material property linking the microstructure to the continuum. There are different theories in literature
which introduce a length scale in a continuum model in order to bypass the inadequacy of standard rate-
independent continuum models to deal with the problem of strain localization. One way is to consider
viscoplastic models (Needleman, 1988; Sluys and de Borst, 1992) or the Cosserat theory (Cosserat and
Cosserat, 1909; Ericksen and Truesdell, 1958). Other possibilities involve gradient of strains or of plastic
variables or are based on nonlocal (integral) theories.

The nonlocal theory has been proposed, at first, by Eringen (1966) and Eringen and Edelen (1972) and
then, for concrete and damaging materials, see e.g. Bazant et al. (1984) and Pijaudier-Cabot and Bazant
(1987). The key idea is to introduce, in the constitutive model, state variables defined in an average form
over a finite volume of the body (de Borst, 2001) and the material length parameter determines how the
value of the variable at a certain point is weighted (Bazant and Pijaudier-Cabot, 1988; Pijaudier-Cabot and
Benallal, 1993). The gradient plasticity is a variant of the nonlocal approach in which higher-order spatial
derivatives are introduced in the constitutive equations. It was first suggested by Dillon and Kratochvil
(1970), which motivated the consideration of strain gradient as one way to account for the interaction
among dislocation, and then by Aifantis (1987) and Coleman and Hodgdon (1985) for rigid plastic
materials and, subsequently, it has been developed in several papers, see e.g. Mithlhaus and Aifantis (1991),
de Borst and Miihlhaus (1992), de Borst et al. (1993, 1995) and de Borst (2001).

We consider here materials such that microstructural effects become significant only at the onset of
localization. Accordingly we assume that the classical continuum elastoplastic theory (without any nonlocal
effect) satisfactorily predicts the orientation of the localized deformation band.

In modern plasticity theory, the inelastic constitutive behaviour is described in terms of internal vari-
ables. In the nonlocal approach, the form of the constitutive relations is left unchanged and the yield
condition is modified by introducing a nonlocal internal variable. In this view, a thermodynamic formu-
lation of a nonlocal plastic model has been presented in Borino et al. (1999) in the hypothesis that the
inelastic behaviour is governed by a nonlocal internal variable describing isotropic hardening. In fact a
computational effective model has been proposed in Svedberg and Runesson (1998) in which the nonlocal
internal variable governing isotropic hardening is obtained as the difference between a nonlocal field and a
local field.

The aim of this paper is to cast nonlocal and gradient plasticity models with internal variables in the
framework of the convex analysis which provides the appropriate tools for a theoretical analysis of such
problems. It is also shown how it is possible to consistently derive nonlocal variational formulations to be
used for a subsequent finite element analysis.

In the present paper a unified constitutive model of nonlocal and gradient standard plasticity is set in the
framework of the generalized standard material introduced by Halphen and Nguyen (1975) and Nguyen
(1977). The free energy and the elastic domain are respectively defined in the product space of kinematic
and static generalized variables. The nonlocal and gradient behaviour is obtained by a suitable definition of
the free energy and a nonlocal version of the maximum dissipation theorem is proved. Then the response of
the material to a given total strain rate is developed and the related variational formulations are provided
by appealing to the properties of saddle functionals and of local subdifferentiability.

The structural rate problem is then addressed. An original variational formulation in the complete set of
local and nonlocal state variables is provided and the systematic derivation of variational formulations with
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different combinations of state variables is presented. In particular the generalization to the nonlocal and
gradient context of the classical variational principles of Prager and Hodge (1951), Greenberg (1949),
Capurso (1969), and Capurso and Maier (1970) involving the plastic multiplier, are provided.

Moreover, it is shown that the nonlocal model here proposed encompasses, as a special case, the con-
stitutive nonlocal (integral) models provided in Borino et al. (1999) and Borino and Failla (2001).

The variational formulations contributed in Borino et al. (1999) are recovered by a suitable special-
ization of the variational formulations proposed in this paper. A critical comparison between these vari-
ational formulations shows that the nonnegativeness of a quadratic form involving plastic multipliers,
appearing in a variational principle reported in the previously quoted paper, can be omitted by appealing to
the property of local convexity.

Finally the variational principle for gradient plasticity proposed by Miihlhaus and Aifantis (1991), and
referred to in de Borst and Miihlhaus (1992), Fleck and Hutchinson (2001) among others, is recovered as a
special case of the proposed formulation.

2. Nonlocal and gradient plasticity

We analyse a nonlocal elastoplastic structural problem defined on a regular bounded domain Q of an
Euclidean space. The inelastic model is cast in the framework of internal variable theories of associated type
and the generalized standard material (Halphen and Nguyen, 1975) is considered.

The dual spaces of strains ¢ and stresses ¢ will be labelled by & and % respectively and the elastic strain
will be denoted by e € Z. The internal variables account for the evolution of the hardening/softening
phenomena. Following the approach proposed by Halphen and Nguyen (1975), the kinematic (strain-like)
internal variables are denoted by k € %, o) € ¥, o, € %, and the dual (stress-like) static internal variables
are X € %', 5, € ¥, 1, € %,. From a mechanical point of view, the static internal variable y, describes the
kinematic hardening, the variable y, describes the nonlocal isotropic hardening and X describes the iso-
tropic softening behaviour.

It will be shown in the sequel that the rates of —k and «, coincide with the plastic multiplier and the rate
of o, has the direction of the inward normal to the elastic domain. The symbol ((e,e)) denotes the inner
product in the dual spaces and has the mechanical meaning of the internal virtual work. For the Cauchy
model we have

((o,9)) :/Q.-on,

where - denotes the simple (double) index saturation operation between vectors (tensors).

In order to properly define the constitutive model, it is necessary to introduce the saddle (convex—
concave) differentiable functional @ : Z x % x % x %, — R (where R = {—o00 U R U +o0}) representing
the free energy and the convex elastic domain C in the product space S x %' x %' x %’,.

The free energy is additively decomposed in the sum of a strictly convex potential @ (e), representing the
elastic energy, and of a saddle functional &;,(a;, o, k), convex in (o, o) and concave in k, which accounts
for inelastic phenomena. Such a decomposition corresponds to the mechanical assumption that the elastic
behaviour does not depend on the evolution of inelastic phenomena and has been usually adopted in
literature concerning local and gradient plasticity, see e.g. Lubliner (1990) Reddy and Martin (1991), Simo
et al. (1988), Stromber and Ristinmaa (1996), and Svedberg and Runesson (1998).

Nonlocal effects can then be modelled by giving the following expression to the free energy:

D(e, oy, 0, k) = Pe(e) + Pin(atr,00,K) = Pe(e) + Pp(or, k) + Py (2), (1)
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where the free energy component @; (o, x) is saddle in (o, x) and @y (o) = Py (E(0p)) is the convex
nonlocal part of the free energy.

A nonlocal plastic behaviour can be modelled by assuming that the functional &,; at a point x of the
body Q depends on the entire field «,. This task can be achieved by considering the nonlocal kinematic
(strain-like) variable ¢ € Z having the following parametric representation:

¢(x) = (Roy)(x), (2)

where R : %, — % denotes a suitable linear regularization operator (Pijaudier-Cabot and Bazant, 1987,
Stromber and Ristinmaa, 1996; Borino et al., 1999). The kinematic internal variable ¢ turns out to be
nonlocal since its value at the point x of the body € depends on the entire field «,. Since a nonlocal
behaviour must be present for high space variation of the local variable o,, we assume that the kernel of R is
provided by uniform fields.

The expression (2) encompasses both nonlocal and gradient plasticity as shown hereafter.

e Nonlocal plasticity: A nonlocal kinematic field £ can be obtained as a spatial weighted average of the
variable o, in the form:
1
V(x)

) = (R)(x) =55 [ AWmWdy, Y= [ AWy, ()
Q Q
where f,(y) is a spatial weighting function depending on a material parameter called the internal length
scale and V(x) is the representative volume at the point x.
From a computational point of view (see e.g. Svedberg and Runesson, 1998; Borino and Failla, 2001) it
is convenient to perform an additive decomposition of the nonlocal internal variable ¢ in the form

— /Q 7x(V)oa(y)dy — aa(y), 4)

where 7,(y) is a spatial weighting function. The first term at the r.h.s. of (4) complies with a nonlocal
behaviour and the second term complies with a local behaviour. Denoting by A, (y) the Dirac delta centred
at the point x, the expression (4) can be modified in the form:

1
= — 9 — A
60 = g [ nmmmdy = [ Ammway, 5)
and it turns out to be apparent that the expression (5) is of the same form of relation (3) by assuming
B(¥) = 75(y) — V(x)Ax(y). Accordingly the nonlocal form (4) can be viewed as a special case of (3) which
will be referred to in the sequel.

e Gradient plasticity: The regularization operator is chosen as a differential operator (see e.g. Miihlhaus
and Aifantis, 1991; de Borst and Miihlhaus, 1992; de Borst, 2001) so that R assumes the following form:

E(x) = (Ro)(x) = (Vo) (x), (6)

where V denotes the gradient operator and c is a length parameters which tends to 0 for ' — 0.

Accordingly the expression (2) provides in a unitary framework a nonlocal variable or a gradient one so
that, in the sequel, we will refer to the generic form of the nonlocal variable (2).

Let us now provide the constitutive relations for nonlocal and gradient plasticity. Recalling the
expression (2) of the nonlocal kinematic variable £, the constitutive relations can be obtained from the
saddle free energy (1) as follows:
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o = ddg(e),
7 = dy Pp (o, k)
3 —X)=do R S , , 7
(0, %15 125 ) (e, 0,00, K) %o = o, Py (E(2)) = R'dDy, (8) = Ry, ()
X = dK¢L(a17K)7

where we have set y = d®y,(¢) € 2" and R’ : 2" — %/, denotes the dual operator of R.

Note that the static internal variable y,, which is dual of the (local) kinematic internal variable oy, is a
global variable since its pointwise value depends upon the entire field y over the body Q, i.e.
1 (x) = (R'y)(x) for any x € Q.

Starting from (3), it is immediate to prove that the dual regularization operator for nonlocal plasticity is
given by

1
R0 = [ 5 B0 .
The operator R is self-adjoint, i.e. R’ = R, if the representative volume ¥ does not depend on the point x.

If a linear nonlocal hardening behaviour is assumed, the expression of @, is given by

uo0) = 5 (o), E0)) = 5 (s Re)) =5 [ 0 | [ gty o Q

where h : & — Z' is a positive hardening modulus so that we have y, = R'hé(xy) = (R'AR)a,.
In the case of gradient plasticity we have

Do) = 5 (hE(s2) £1))) = 5 (R, R)) =3 [ 0V - T Q

and the duality between y, = R’y and «, yields
((1,R%)) = (R'y,02)) Voo € %, € 2

which provides the Green’s formula:

/}5 -Vop,dx = — /(divx)oczdx+/ z - n(Toy)ds,
Q Q 0Q
where n is the outward normal at the boundary 0Q of Q and I'a, yields the values of a, at the boundary of
Q, ie. Loy = o).

The constitutive model is completed by introducing the elastic domain C which is defined in the space of
stresses and of static internal variables (o,y;,1,,X) as the level set of a convex yield mode
G: I XY XUy, x % — RU{+oo} in the form:

C: {(O—axlaX%X) € ‘y X @/l X J?/,Z X @l : G(O—axhbe) g0} (10)

provided that the minimum of G is negative.
The constitutive model can be formulated in a more convenient way by defining the following gen-
eralized vectors collecting together local and nonlocal variables:

€ e p o
&= 0 ) e = |, P= —o |, o = X1 |- (11)
0 o —0ly 1

The vectors ¢, e, p and o represent the generalized vectors of total strain, elastic strain, plastic strain and
stress. Accordingly two generalized spaces ¥ = 2 x % x %, and & =& x %' x %', denotes the gen-
eralized spaces of strains and of stresses and the scalar product between generalized vectors is
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((6,€)) = ((g,€)) + ((x1,1)) + ((22, %2))- In the sequel, for simplicity, the term generalized will be omitted
since no confusion can arise.

3. The elastic domain

In the applications the yield mode, defining the elastic domain C, is usually written in the form:
G(o-»X):G(O-aXhXZaX):g(gaXl)_XZ_X_am (12)

where g is a convex function and g, represents a constant scalar value which characterize the initial yield
limit. The choice of the function g depends on the particular yield criterion adopted for the material, see e.g.
Salengon (1983).

The flow rule can be formulated in terms of the normal cone N to the elastic domain C as follows:

(pa K) :NC(G7X) = al—|C (O',X) — (pv_d(la _&27;.C) :NC(G7X17}{21X>7 (13)

where Uc(e,X) is the indicator of the elastic domain and turns out to be zero if (¢,X) € C and +o0

otherwise (see Appendix C). The static internal variable X and its dual kinematic internal variable x are

kept separate from o and p respectively to point out that they are associated with a softening behaviour.
The flow rule (13) can then be reformulated in the following three equivalent forms:

(paK) GNC("?X)& (GaX) GaD(j’7k)7

Ue (6,X) + D(p, i) = ((0.9)) + (X, ), (14

where D: & x % — RU {+o0} is the plastic dissipation associated with the plastic flow (p, k) whose
expression is given by the support functional of the elastic domain C:

D(p,ic) = sup{((a,p)) + ((X,%))|(¢,X) € C}
= sup{((6,p)) — ((71,1)) — (%2, &2)) + (X, %)) (G, %, 7o, X) € C} (15)

The sup operation is performed with respect to the over barred state variables ®. Explicitly the relations (14)
are

(pa 7dl7 —dg, K) € NC(O-v X1s XZ?X)a
(0-7 X1s X27X) € aD(P» _dla _d27 K)v
Ue(0, 115 %2, X) 4+ D(p, =8, =82, k) = ((0,9)) — (11, 81)) — (12, 82)) + (X, K)).
Let us express the flow rule (14), in terms of the plastic multiplier 1. Assuming that G is continuous in C and

noting that Uc(e,X) = Ug-[G(e,X)] where R™ collects the nonpositive scalars, a subdifferential rule con-
tributed in Romano (1995) yields

0lUc (6,X) = 0(Uy- 0 G)(6,X) =0 Uy [G(6,X)]dG(e,X) V(e,X) € C.
Since 0 Ug- [G(6,X)] = Ng- [G(6,X)], we have that the flow rule (14), can be rewritten in the following
equivalent forms:
(p7K) € NC(o'vX) =0Uc (GvX)a
(p, k) = AdG(6,X) with A € Ng-[G(6,X)] = 0Ug- [G(6,X)], (16)
(p, k) = 2dG(e,X) with 1 =0, G(6,X)<0, 1G(s,X) =0,

where / is the plastic multiplier.
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Recalling the expression (12) of the yield mode, the relation (16); is explicitly given by

p = ;“d(fG((L leXZaX) = )»d(;g(O', Xl)7
—oy = Ad,, G(a, 11, 12, X) = Ad,, g(0, 11)s

. " 17
—0y = /“de(GaleXz»X) = _)w ( )
K= ;LdXG(O—7XbX27X) =—1
under the complementarity conditions
220, glo, 1) =1 —X —09<0, Agla, 1) — 2 —X —a9] = 0. (18)

As a result, the rate of the kinematic internal variable &, coincides with the plastic multiplier so that the
parametric representation of ¢ is given by & = RA. Since in the elastic range k = a, = 0, the relations (17);
and (17)4 yield the equality x = —a,.

3.1. Nonlocal form of dissipation and of Lagrangian functional

It is well known that the principle of the maximum dissipation of Hill (Hill, 1950; Simo, 1988) plays a
central role in local standard plasticity. This subsection shows that an analogous principle can be assessed
for the proposed model of nonlocal standard plasticity.

Proposition 1 (Maximum dissipation). Let (6,X) and (p, k) fulfill the flow rule (13). The dissipation D(p, k)
attains its maximum at the point (6,X) and can be written in the form

D(p, k) = ((a,p)) + (X, k) = ((0,p)) = ((11,1)) = (12, 82)) + (X, %)) (19)

Proof. The pairs (¢,X) and (p, «) fulfill the flow rule (13) so that the Fenchel’s equality (14); is met. Hence
we have

D(p, k) = ((e,p)) + (X, i) — Uc(e,X) = ((,p)) + (X, K))

since the indicator L¢ is zero being the static variables admissible, i.e. (6,X) € C. O

Following the arguments presented in Romano et al. (1992) for local plasticity, it can be proved that the
dissipation D is nonnegative if the origin of the strain space D x % belongs to the elastic domain C.
The nonlocal dissipation for the Cauchy model is then given by

D(p,dq,o'cz,ic):/ga-pdx—/gxl-dcldx—/g%- [/Qﬁx(y)o'cz(y)]dx—&-/g)(icdx

and, for gradient plasticity, it turns out to be
D(j?,d(l,dz,k) :/a-pdx—/xl OCldX—/CXVOQdX—i-/XKdX
Q Q Q Q
Let us now derive the expression of the Lagrangian L associated with the dissipation D. Recalling that

Uc(e,X) = Uy~ [G(6,X)] and noting that Ug-[G(e,X)] and Ug (1) are conjugate functionals (Hiriart-
Urruty and Lemarechal, 1993), it turns out to be

Ue(,X) = Ua [G(0.X)] = sup{AG(g.X) — Uy (1)} = — inf{~7G(e. X) + Uy (1)}, (20)

where the equality sup(e) = — inf(—/e) has been used.
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Accordingly the expression (15) of the dissipation D associated with a plastic flow (p, k) becomes
D(p, k) = sup{((a,p)) + ((X,k)) = Uc(a,X)} = sup inf{((s,p)) + (X, &) - 1G(8,X) + Uni (2)}
7. X o X

= sup inf L(1,6,X),
aX
where L(4,6,X) = ((6,p)) + (X, %)) — 2G(6,X) 4+ Ug,(4) denotes the Lagrangian, associated with D,

which turns out to be concave in (,X) and convex in A for any given plastic flow (p, x). A saddle point is
attained for a pair (4,6,X) such that the plastic flow (p, i) fulfils the normality rule (16) at (¢,X):

D(p, k) = sup inf{((@.p)) + (X, %) = 2G(8,X)} = ((e.p)) + (X, k).

4. The constitutive rate model

The constitutive model of nonlocal and gradient plasticity can be formulated by considering the addi-
tivity of strains, the constitutive relations (7) and the flow rule (14):

e=e+p (additivity of strains),
(P, k) € Nc(o,X) (flow rule), (21)
(6,—X) =d®(e,i) (elastic relation).
To define the relevant rate model, it is compelling to reformulate the constitutive relations (21) in terms of
the rate of the state fields.

The relation between the stress rate (¢,.X) and the plastic flow (p, ) can be achieved by considering the
Prager’s consistency condition:

((671’)) + ((Xﬂ K)) =0 V(IJ,K) € NC(GaX)7 (va) € TC(GvX)a (22)

where 7c(6,.X) is the tangent cone to the elastic domain C at the point (6, X). If (¢, X) belong to the interior
of C, the generalized stress rate (6',X ) is arbitrary. On the contrary if (6,X) belongs to the boundary of C,
the tangent cone turns out to be a proper subset of S x %",

The normality rule (21), and the Prager’s consistency condition (22) can be collected in a unique relation.
In fact, setting 7 = Tc(e,X) and A" = Nc(6,X), condition (22) is equivalent to the equality:

U7 (6,X) + Uy (p k) = ((6,p)) + (X, &)). (23)

By virtue of the equality Ll (p, k) = U (p, k) proved in Appendix A, the relation (23) can be rewritten in
the three equivalent forms:

Uz (67X) + l—l}(i’v K) = ((671’)) + ((X7 K))7
(6,X) €0, (p,k) =Ly (p, i), (24)
(p, k) €U (6,X) = Ns(6,X).

The rate elastic constitutive relation can be obtained from the elastic relation (21);:

o = d*®y(e)e = Eé,

7 =d; (o, 6)3 = Hid,

I = diz‘PNL(f(OCz))O'Cz = [R' Py, (E)R]6, = Hair,
—X = 2@, (o), )k = HE,

(6,—X) = d*®(e, k) (e, k) < (25)
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where E = d2<1>el( ) denotes the tangent elastic modulus, H; = d <DL(oc1, k) is the tangent kinematic hard-
ening modulus, H, = R’ d? @ (E)R provides the tangent isotropic hardenmg modulus and H = d Dy (o1, )
represents the tangent isotropic softening modulus. For a linear behaviour of the type (8), we have
= R'/R.
Denoting by # = diag[E, H,, H,, H] the matrix collecting the elastic and hardening/softening tangent
moduli, the relations (25) can be expressed in the form (g, —X) =d¥(e, k) by introducing the saddle
(convex in e and concave in k) rate elastic potential V¥ : I xY — R (where R = {—oco UR U +o0}):

V(e k) =1=< A (e,0,0,ik),(e,0, 0, k) >
= 5((E67 e)) +3((Hidu, 04)) + 5((Hade, 82)) + 5((HE, &)). (26)
The constitutive model of nonlocal and gradient rate plasticity is then given by

g=e+p ) (additivity of strain rates),
(p, ) € N7(6,X) (rate flow rule), (27)
(6,—X) =d¥(e,k) (rate elastic relation).

In order to derive a variational formulation pertaining to the proposed nonlocal and gradient elasto-
plastic model, it is compelling to consider alternative expressions of the rate elastic relation. To this end we
introduce the conjugate saddle functional ¥ : % x %' — R which represents the complementary rate
elastic potential defined by

and the convex functionals 5 : & x % — RU +oo} and E* : ¥ x %' — R U +oo}, associated with ¥ and

¥*, defined by
E(6,k) = —ir)l.(f{(()'(, k) — ¥ (6,X)} = sgp{((d', ¢)) — ¥(e,x)},

s . . . . e (28)
E'(e,=X) = —nf{((X,k)) — ¥(e,ic)} = sup{((6,¢€)) — ¥ (6,X)}.
The rate elastic relation (27); can then be inverted according to the following equivalent expressions:
.’_X :dT .’. ; .,. :dql* .7_X’
(6,—X) (¢, k) (e, k) (6,-X) (29)

(e,X) = dZ(6,k), (6,%) = d="(e,X)
which can be equivalently rewritten in terms of Fenchel’s equalities:
(6 X) + P k) = —((X,k),  E(6,k) + P(e, k) = ((6,¢)),
- E<é'a K) + T*(Gv _X) = _((Xv K))v E*(e’X) + SU*(‘.’& _X) = ((0’78)), (30)
E'(e,X) + E(6,%) = ((6,0) + ((X, k)  P(e,ik) + (6, —X) = ((6,¢) — ((X,k)).

[I]

-

4.1. Variational formulations for a given total strain rate

The rate constitutive model (27) is governed by a monotone multivalued operator (see Appendix B) since
the equality N = 0Ls holds. Accordingly a direct formulation of the constitutive variational principles
can be obtained by resorting to the potential theory for monotone multivalued operators contributed in
Romano et al. (1993).

The variational formulation in terms of the state variables (6, p, ¢, X, k), for a given total strain rate &, is
provided in the next statement. The related proof is reported in Appendix B.



7338 F. Marotti de Sciarra | International Journal of Solids and Structures 41 (2004) 7329-7349

Proposition 2. For a given &, the quintet (6, e, X, p, K) is a solution of the convex optimization problem:
min statX(é, e, X, p, i),
eXpic ©
where
X(6,6,X,p, k) = 5'(&,X) + LUy (p, k) — (6, +p)) — (X, k) + ((6,8)) (31)

if and only if it is a solution of the nonlocal elastoplastic rate model (27).

The expression (31) shows that the potential £ turns out to be convex in the state variables (&, X, p, k)
and linear in 6. Accordingly a stationarity point for X can be found by performing the minimum of X with
respect to the variables (é,X ,P, k) and by enforcing the stationarity condition with respect to &.

It is proved in Appendix B that a direct integration of the constitutive relations (27) provides the po-
tential X. Let us now show that the state variables (c’r,é,X , P, k) provide a stationarity point for X if and
only if the constitutive relations (27) are recovered. In fact we have

0 e s G

(0,0) €0y 4) X [0} =d&"(e,X) — {K],
4 .. 6 (32)

(0,0) S 6(1;,,-{) E = |:0:| S al_l‘ (p, K) — |:X:|,

0€X & 0o=—(e+p) +&,

(0,0,0,0,0) € 0X(6,¢, X, p, k) <=

where 0, )X denotes the subdifferential of ¥ with respect to e. If X is differentiable with respect to the
variable e, the subdifferential turns out to be the usual differential. From (32), and recalling the equivalent
expressions (29), we have

(6,k) =d=*(e,X) < (6,—X) = d¥(e, k)
so that the rate elastic relation (27); has been obtained. From (32), and recalling the relations (24), we have
(6,X) cdU (p,k) <= (p,k) €Uy (6,X) = N,(6,X)

which coincides to the rate flow rule (27),. Finally the additivity of strain rates is given by (32); and the
constitutive model is recovered. An analogous procedure can be followed to prove the variational for-
mulations hereafter obtained.

Several variational formulations can be obtained by enforcing the fulfilment of the constitutive relations
(27) in the expression of the potential X. If the additive decomposition (27); is fulfilled and the rate elastic
relation is met in the equivalent form (30);, the potential (31) becomes

which is convex in p and locally subdifferentiable (Romano, 1995) in «.

Let the rate flow rule (27), and the rate elastic relation (27); be fulfilled in the form of Fenchel’s equalities
(23) and (30),4, the potential (31) thus becomes

L(6,X) = —¥*(6,~X) — Uy (6,X) + ((6,8)) (34)

which is concave in & and locally subdifferentiable in X.
Hence the next statement can be inferred.

Proposition 3. For a given &, we have

(1) the pair {p, i} is a solution of the optimization problem: min, stat, X, (p, k),

(ii) the pair {6,X} is a solution of the optimization problem: max, statyX,(é,X), if and only if it is a solution
of the nonlocal and gradient elastoplastic rate model (27).
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Additional variational formulations depending on different combinations of the state variables can be
obtained following the same reasoning.

It is useful to derive a constitutive variational formulation in terms of the plastic multiplier 4 in order to
perform, in Section 5.2, a comparison with an analogous functional provided in Borino et al. (1999) in the
case of linear elastic and hardening behaviour.

To this end, we note that the indicator U (p, k), appearing in (33), requires that the plastic flow fulfils
the flow rule, that is (p, k) € Nc(e,X). Recalling the expression (26) of the rate elastic energy ¥ and the
expression (17) of the flow rule, the functional X, (p, &) can be rewritten in terms of the plastic multiplier Z in
the form:

I3(4) = 3((E&, ) — ((E&, 1dsg(0, 1)) + 3((E2deg(0, 1), Adeg(0, 11)))
+3((Hi2d, g(0, 11), 2dy8(0, 1)) +5((H22, 2)) + 5((HZ, 7)) (35)
subject to the conditions 4 > 0, G(a(4),X (1)) <0, 2G(a(2),X (1)) = 0.
By dropping the constant term ((E¢, ¢)), we have
Proposition 4. For a given &, the plastic multiplier A is a solution of the optimization problem:
stat{II(1) s.t. 1 =0, G(a(1),X(2)) <0, 1G(a(1), X(1)) = 0},
where
(%) = 5((EAdog(a,11), 2dsg(0, 11))) — ((Eé, 2dsg(a, 11))) + 3(HiAd, g(0, 11), 2d,, &(0, 71)))
+3((H22,2)) +5((HA, 2))

if and only if it is a solution of the nonlocal elastoplastic rate model (27).

Here “s.t.” stands for “subject to”. The specialization of the functional IT to the case of nonlocal
plasticity for the Cauchy model is

, 1 . 1
H(A):E/QEidgg(G,xl)-/ldag(a,xl)dx—/QEsJ»dag(G,xl)dXJrE/QHlidzlg(a,xl)-)»dzlg(o',xl)dx

+%/Q#[/Qﬂx(y))»(y)dyrdxﬂ%/QHide’

and to the case of gradient plasticity is

1

) ) 1
H(A):E/QEidag(a,xl)~/ldag(a,xl)dxf/{2E8~)Ldﬂg(0,xl)dx+§/QHMvdzlg(a,;(l)-)Ldzlg(a,xl)dx

+l/hc2V/1~Vidx+l/H22dx.
2 /o 2 /o

5. The structural rate problem for nonlocal plasticity

Let us now analyse the rate response of an elastoplastic structural problem having a nonlocal consti-
tutive behaviour in the form previously defined. Displacements are assumed to belong to the Sobolev space
wu = H™(Q) of fields which are square integrable in Q together with their distributional derivatives up to the
order m (Brezis, 1983). Conforming displacement fields fulfil linear constraint conditions and belong to a
closed linear subspace ¥ C %.
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The kinematic operator B € Lin{%, %} is a bounded linear operator from % to the Hilbert space of
square integrable strain fields. Denoting by % the subspace of external forces, which is dual of %, the
equilibrium operator B’ € Lin{.%, # } is dual of B. The symbol (e, ®) denotes the duality pairing between %
and its dual #. Let ¢ = {t,b} € # be the external loads where t and b denote tractions and body forces. No
imposed strains and displacements are considered for simplicity but they may be easily included.

The equilibrium equation, between external forces f and stresses o, and the compatibility condition,
between strains ¢ and displacements u, are given by

f=Bo where feZ, €%, c¢cBu whereeec Pucu.
The relation between reactions and displacements is assumed to be given by
r € 0Y(u) or equivalently u € 0Y"(r),

where 7 : % — RU{—oo} is a concave functional and 1™ : # — RU{—oo} represents its conjugate
(Hiriart-Urruty and Lemarechal, 1993). Different expressions can be given to the functional 7" depending
on the type of external constraints such as bilateral, unilateral, elastic or convex. A survey of the particular
expression assumed by the functional 7" in each of these cases can be found in Romano (2002). For future
reference we report the expressions of 7 and 7™ in the case of external frictionless bilateral constraints with
homogeneous boundary conditions. Denoting by ¢ the subspace of conforming displacements and by
R = #* the subspace of the external constraint reactions, it turns out to be

B o fue?, ., \ _Jo if r e 24,
T(u) - I_lf/}(u) - { —00 Otherwise’ T (I") - l_l“([L (l”) B { —00 OtherWiSe,

being L the orthogonal complement. Accordingly the relation » € 0 (u) is equivalent to state u € ¥ and
r€R= 2" 1ie. {r,v) =0 for any conforming displacement v € Z. -

Defining the pair of dual operators B=[B 0 0]':U— % and B =[B 0 0]: % — #, the
relations governing the nonlocal and gradient structural rate problem of the body Q for a given load rate ¢,
starting from a known state, are given by

Bo=1/(+i (equilibrium rate),
Bi=é¢+p (compatibility rate),
(6,k) =dE="(e,X) (rate elastic relation), (36)
(6,X) €0U, (p,ic) (rate flow rule),
i€ oY (i) (rate external relation).
The structural problem can be recast in the following operator form:
01 [0 B o 0 0 0 —Ir|Tal T[4
0o B 0 —[; 0 —]; 0 0 6 o
0 0o —I~ 0 0 0 e 0
4
d=* _
Olel o o0 0 Iy 0 [[X|— |0,
o 0 -1 0 0 0 P o
" GI
0 0 0 0 —Iy 0o ||* 0
01 -, o o0 0 0 o or L")l LO]

where I, denotes the identity in the space e.
The conservativity of the above structural operator is based on the conservativity of the constitutive
operator C and can be proved following a reasoning similar to the one reported in Appendix B. A direct
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integration of the structural operator provides the following potential in the complete set of state variables
is thus obtained:

Qi,6,6,X,p,k, i) = 5 (e, X) + U (p, k) + T*(r) + ((6,Bir)) — ((6,& + p)) — (X, k) + (£ + i it).
(37)

The potential Q is linear in (i, ), convex in (&,X, p, k) and concave in . We then have

Proposition 5. A set (i, 6, e X, p K, ) is a solution of the nonlocal and gradient rate elastoplastic structural
problem if and only if it turns out to be a stationarity point for Q.

A family of potentials can be recovered from Q by enforcing the relations (36). The stationary points of
these potentials provide a solution of the structural problem.

5.1. Variational principles

Let us now derive a variational principle for nonlocal and gradient plasticity which specializes to the
Prager-Hodge principle in the case of local plasticity (Prager and Hodge, 1951). It can be obtained from Q
by imposing the equilibrium rate equation (36);, the rate elastic relation (36); and the rate flow rule (36),.
The relations (36); and (36), can be written, in terms of Fenchel’s equality, according to (30), and (23) so
that we get the locally differentiable functional:

Q(6,X) = -V (6,—X) —Us(6,X) + T (B¢ — 0). (38)
The following statement thus holds.

Proposition 6. The pair (é',X ) is a solution of the optimization problem:

max statQ, (¢, X)
& X
if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).

Let us now derive a one-field potential which specializes to the Greenberg principle in the case of local
plasticity (Greenberg, 1949). We enforce in the expression (37) of © the compatibility rate condition (36),,
the rate elastic relation (36); in the form of Fenchel’s equality (30),, the rate flow rule (36), in terms of
Fenchel’s equality (23) and the rate external relation (36)s in terms of Fenchel’s equality:

Yw)+ 7T (r) = (r,u) (39)
to get the potential
92(7;!767).(71.77 K) = lP(Eu _P, K) - U7(0'7X) - T(u) + ((O’,p)) + ((X7 K)) - <€7 u> (40)
which is convex in (i, p) and concave in (6, X, k).
We thus have
Proposition 7. The set (i1,6,X, p, ) is a solution of the saddle problem:

min max Q,(it, 6, X, p, k)
wp o 6X i

if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).



7342 F. Marotti de Sciarra | International Journal of Solids and Structures 41 (2004) 7329-7349

In order to eliminate the quartet (&,.X, p, k) from the independent variables of the potential £,, we define
the following convex functional:

w(Bir) = inf sup{¥(Bit — p, i) — Uz (6,X) + ((6,p)) + (X, k))}. (41)

P X
Substituting (41) in the potential Q,, we get the convex functional:
Qy(ir) = W (Bir) = Y(u) — ({,ir) (42)

so that the next statement holds.

Proposition 8. The displacement rate it is a solution of the convex optimization problem:

min Q3 (i)
if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).

Let us now derive from the Propositions 6 and 8 the corresponding variational formulations in which the
plastic multiplier explicitly appears as an independent variable.

The variational principle in (&, ) has been introduced by Capurso (1969); Capurso and Maier (1970) for
local plasticity. Its counterpart for nonlocal and gradient plasticity can be obtained from (38) by modifying
the expression of LI (6, X) according to the result provided in Appendix A:

((6,4dsG(@, X)) = (X, 4)) = Uy () i G(g,X) =0,

uf(d’vXa/l) = {U (O‘,X) if G(O’,X) < 0. (43)

~
I xy'

Taking into account the above expression (43), the expression (38) of the potential £, can be reworked to
provide the next statement.

Proposition 9. A triplet (6,X, ) is a solution of the optimization problem:
m}n max st;ttQ;;(c’;,X, ),
where
Qu6,X,7) = -V (6,—-X)+ T (Bé— 1)
—((6,2d,G(6,X))) + (X, 1)) + Uy (1) if G(6,X) =0,
+ { —U-(6,%) if G(e,X) <0 }

if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).

To get the nonlocal variational principle in (i, 1), which is the counterpart of the one introduced by
Capurso (1969) and Capurso and Maier (1970) for local plasticity, we insert the expression (43) into the
expression (41) of W in order to explicitly introduce the plastic multiplier A:

W (Bir, ) = inf sup{¥(Bit — p, ) + ((¢,p)) + (X, &)
P osxi

. { ~((6,4d,Glo, X)) + (X, 2)) + U+ (4) i Glo,X) =0, }
- (6,X) if G(a,X) <O0.

~
I <y
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Hence it turns out to be
Proposition 10. A pair (it, 1) is a solution of the convex optimization problem:
min Qs(iz, 2),
U,/
where
Qs(it, 2) = W(Bit, 1) — T (i) — (£, i) (45)
if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).
5.2. Comparison with existing results
The nonlocal constitutive model and the related variational principles contributed in Borino et al. (1999)

can be recovered as a special case of the treatment developed in this paper. In fact let us consider the
following expression of the free energy

P(e, ) = Pale) + Pr(E()) (40)
which is convex in (e, o,), and let the elastic domain be defined in the form:
C={(0.202) €S xW,:G(o,7,) = gl0) — 1 <O} (47)

The expressions (46) and (47) show that inelastic phenomena are governed by the nonlocal free energy @y,
and no local plastic behaviour is considered. Note that, in the notation adopted in Borino et al. (1999); the
kinematic internal variable o, and the nonlocal static internal variable y, are labelled x and X respectively.

Remark 11. In Borino and Failla (2001), the constitutive model provided in Borino et al. (1999) is enhanced
following the proposal made in Stromber and Ristinmaa (1996). Actually, in addition to the state variables
(e,22) a local internal variable k € % and its dual X € %' are introduced in order to account for isotropic
softening. This model can be recovered from the model proposed in the present paper by considering the
following expressions for the free energy and for the elastic domain:

D(e,k,m) = Py(e) + Dp(K) + Py (E(22)),
C={(0,X,10) €S XY x¥,:G(0,X,1,) =g(a) =X — y, <0}

If the expressions (46) and (47) are considered, the variational formulation of the constitutive rate model
reported in Proposition 4 becomes

Proposition 12. For a given &, the plastic multiplier 7 is a solution of the optimization problem:
stat{P(1) s.t. 1 =0, G(a(4),1,(4)) <0, AG(a(4), y2(2)) = 0},

where
P(1) = 3((EZdg(0), Adg(0))) — ((E, Adg(0))) +3((H24, )

if and only if it is a solution of the nonlocal elastoplastic rate model proposed in Borino et al. (1999).

The expression of the potential P(1) coincides with the expression of I1[/] reported in Borino et al. (1999)
by noting the equality ((H24, 1)) = ((R'd*®y, (6)RA, 1)) = ((d* @y ()R, RA)). It is worth noting that the
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nonnegativeness condition of the quadratic term H, A - A + EAdg(o) - 2dg(o), which has been introduced in
the statement of the analogous variational formulation reported in the quoted paper, is inessential as shown
in Proposition 12 above where the minimum set of essential conditions is reported.

Assuming bilateral frictionless external constraints, the Proposition 7 involving the potential €, can be
explicitly rewritten in the form:

Proposition 13. The set (i1, 6, 7,,p, %) is a solution of the saddle problem:

min max Ll (u7 (.77 j(Zapa OC2)
ip  6,02,00

subject to the conditions i € & and ((6,p)) — ((j2,62)) <0 where
L (i, 6, j, Py 82) = S((E(Bit — ), Bit = p)) + 3((Ha8,62)) + ((6,5)) — (12, 82)) — {£:t) (48)
if and only if it is a solution of the nonlocal elastoplastic structural rate model proposed in Borino et al. (1999).
In Borino et al. (1999) the expressions ((H,&,,4,)) and ((j,,d)), appearing in L, are provided in terms

of the nonlocal variable ¢ and of its dual local variable y. Actually, recalling (2) and the equality
H, = R'd*®y; (E)R, we have

((Ha82,82)) = (R'd* i (HRi, i) = (AP (§)€, €)),

((127 OCZ)) = ((R/X7 (XZ)) = ((X» é))

so that the Proposition 13 coincides with the corresponding one reported in Borino et al. (1999).
The kinematic-type variational principle reported in Borino et al. (1999) can be obtained from Propo-
sition 10. In fact evaluating the expression (44) it turns out to be

W (Bir, 1) = 3((E(Bit — 2dg(a)), Bit — 2dg(a))) +3((H24, 2)) (49)
subject to 2 = 0 if G(6,X) =0 or A =0 if G(0,X) < 0. Hence we have:
Proposition 14. 4 pair (it, A) is a solution of the concave optimization problem:

min L, (i, 1)
under the conditions i€ ¥, 220 if G(o,X) =0 or =0 if G(0,X) < 0, where

Lo (it, ) = 5((E(Bit — 7.dg(0)), Bit — 2dg(a))) + 3((d’@n: (E)RZ,R2)) — (£, i) (50)

if and only if it is a solution of the nonlocal elastoplastic structural rate model proposed in Borino et al. (1999).

Let us now show that Proposition 10 can be specialized to an analogous principle proposed by Miihlhaus
and Aifantis (1991) for gradient plasticity, see also e.g. de Borst and Miihlhaus (1992); Fleck and
Hutchinson (2001). To this end the generalized vectors are defined by

M R T
so that the expression (44) turns out to be:
W (Bit, 2) = Y((E(Bi — 2dg(0)), Bi — 2dg(0))) + 2((Ha24, 4)) + (HA, 4)) (52)

subject to 4 > 0 if G(¢,X) = 0 or 1 =0 if G(¢,X) < 0. Noting that ((H24, 1)) = ((cd*®y.(£)VA,cV 1)) we
have
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Proposition 15. 4 pair (i1, A) is a solution of the convex optimization problem:

min G(i, 1)

under the conditions i € ¥, 2.2 0 if G(6,X) =0 or =0 if G(o,X) < 0, where
G(it, 2) = ((E(Bit — 2dg(0)), Bit — 2dg(0))) + 3((Ha4, 2)) + 5(H2, 2)) — (4, i) (53)
if and only if it is a solution of the gradient elastoplastic structural rate model.

In order to explicitly prove that the stationarity of G is equivalent to the rate gradient model, we note
that the stationarity of G is

0 € 8,G(i, 1) <= B'E(Bit — Adg(a)) =/,
0 €9,G(it, 1) <= 0 € —[dg(0)]E(Bit — 2dg(0)) + HyA + HA 4 d L+ (1).
(54)

(0,0) € 3G (it, 1) <= {

The relation (54), provides the stress rate ¢ = E(Bit — Adg(o)) which turns out to be in equilibrium with the
external load rate /, i.e. B'¢ = ¢. The relation (54), yields Prager’s consistency condition:

(6, 2dg(0))) = (72, ) = ((X, 1)) =0, (55)

where j, = H,A, X = HA and the conditions /4 > 0 and G(¢,X) = [dg(c)]E(Bit — 2dg(a)) — HyA — HA<O0.
The functional G can be rewritten for the Cauchy model in the following form:

G(i, 1) = % /QE(BM — Adg(o)) - (B — Adg(o))dx —l—% /

Ady(&)Vi- de% / H/2dx — (¢, i)
Q Q

and the expression (55)

/QE(BL} — Adg(o)) - Adg(o)dx — /

Q

Ady(&)Vi-Vaidx — / H/-Adx =0 (56)
Q

provides the Prager’s consistency condition.

6. Conclusion

A nonlocal and gradient model of plasticity is presented and is cast in the framework of convex analysis
and of the potential theory for monotone multivalued operators. As a consequence a theoretical analysis
can be performed in analogy with local standard plasticity and variational formulations for the rate
constitutive model are contributed. The rate nonlocal and gradient structural problem is then formulated
and the related variational formulations are provided. It is shown that nonlocal and gradient models and
related variational formulations, recently contributed in the literature, can be recovered as a special case of
the present model. The proposed treatment of plasticity is rather general and can be applied to further
different material behaviours which can be described within the theory of internal variables such as damage
and rate-dependent plasticity.

A discussion of approximation methods and of finite-step nonlocal and gradient plasticity deserves
further analysis and will be the subject of a forthcoming paper.
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Appendix A

T

For simplicity we collect local and nonlocal variables in the vectors ¢ =[¢ 0], e=[e K",

p=1[p «", c=|o X" and we define the dual spaces 9 = 2 x % and g = ¥ x %', The relevant scalar
product is denoted by the symbol < e, e >~ defined as < 6, ¢ == ((6,¢)) + (X, k) = ((,€)) + ((x1, 1)) +
((XZ) “2)) + ((X7 K))

e Let us prove the equality Ll (p) = L% (p). By definition of support functional we have
U, (p) =sup{<1,p>~[t€ T}

If pc A/ wehave < 7,p >~ <Oforany t € .7 andif p € ./, there exists a T € .7 such that < 7,p ~> 0.
Accordingly we have the result i -

0 ifpe.,
)= oo it pg o, = @)

e Let us now prove the expression (43) for the tangent cone to the elastic domain C at the point g. The
tangent cone to the elastic domain C at the point ¢ can be written in the following form:

{6 €| Glg) =<6, dG(g) = <O if G(g) =0,
{ & if G(g) <0

so that the indicator of the cone . becomes

Un-[< 6,dG(g) -] if G(g) =0

Ur(8) =Y U, (¢) if G(a) < 0. (A1)
A pair (e, ), which satisfies the rate flow rule (24), fulfils one of the following two relations:
(1) p€0Un [< 6,dG(a) ~|dG(e) = 4dG(e) with A€ 0Uy [<6,dG(g) -] if G(e) =0,
(ii) pEdly (0) if G(g) <O0.
(A2)

By means of Fenchel’s equality, the constraint condition 4 € 0 Ug- [dG(a)6] can be equivalently written in
the form Ug-[< 6,dG(a) ~] + Ug+ (1) ==< 6,4dG(a) . Accordingly the expression (A.1) of the indicator of
7 becomes

< 6,idG(a) = — Uy (4) if G(a)

Hr (8,4 =14 Ly (s) if G(a) < 0.
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Appendix B

Let us now prove Proposition 2. To this end the rate flow rule (27), is inverted by considering the
equivalent expression (24), and the rate elastic relation (27); is rewritten in the equivalent form (29),.
Recalling that U ;- = LI, the operator form of the constitutive relations (27) is given by

o c 3
o r:e o
0leCl|X|+1]0
o P o
0 K 0
with
0 I~ 0 —I~ 0
g 9
—I~ 0 0
1%
d=*
C - 0 0 7111/ 9
—I~ 0 0
S
oLy
0 0 —Ly |

where C is the multivalued constitutive operator. The operator C can be split in a linear symmetric operator,
and hence conservative (Vainberg, 1964), and in the multivalued operator 0Ll - which is conservative by
virtue of the integral theorem (Romano et al., 1993).

__The potential X can then be evaluated by a direct integration along a straight line in the space
S XD xWY x D x¥ to get

2(6,@,X,1;,k):—/0 ((d',é+1'1))dt+/o ((d=*(e,X), (e,X)))dt

1
- / (X, i) de 4+ Uy (p, ic) + ((6,2))
0
and the expression (31) is obtained.

Appendix C

Some basic elements of convex analysis which have been referred to in the paper are reported. For more
details see e.g. Hiriart-Urruty and Lemarechal (1993).

Let 2 and 2" be a pair of locally convex topological vector spaces placed in separating duality by a
bilinear form (e, e).

The conjugate of a convex functional f:%Z — RU{+o0} is the convex closed functional
S5 X — RU {+oo} defined by

[T = Svgg{@*,y) -/}

If f is closed we have /™ = f.
Given a set K C %, the indicator of K at a point x € %" is defined as follows:

0 ifxek,
Ui (x) = {Jroo otherwise.
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The normal cone to a convex set K at a point x is

Ni(x) = e (xy-x<0 Vyea} ifxek,
B0 otherwise.

The tangent cone to a convex set K at a point x is given by
Tx(x)={yeZ: (x",y) <0 Vx" € Ng(x)}.

If x belong to the interior of K, the tangent cone coincides with the whole space 2 and y is arbitrary. On the
contrary if x belongs to the boundary of K, the tangent cone turns out to be a proper subset of Z.
Given a set K C %, the support functional of K at a point x* € 2 is defined as:
D(x") = sup(x”, y).
yeK
The subdifferential of a convex functional f : Z — RU {+o0}, having a nonempty domain, is the set
df (x) € 2" such that:

X edf(x) = fy) —flx) =,y —x) Vyel.

In particular, if the functional f is differentiable at x, the subdifferential coincides with the differential.
Given a closed convex conjugate functional f and its conjugate /*, the following relations are equivalent:

X' edflx) xedf'(x) S+ () =x),

where the last relation is known as the Fenchel’s equality.

The subdifferential of the indicator functional of a convex set K at a point x € K coincides with the
normal cone to K at x, i.e. 0 Lix (x) = Nk (x). The support and the indicator functionals of a convex set K are
conjugate so that the following relations hold:

x" €0k (x) =Ng(x) xe€0D(x") Uk (x)+Dx") = (x"x).

Given a monotone convex function m:R — RU{+oco} and a continuous convex functional
[ & — RU{+o0}, the functional (mf) is convex and its subdifferential at a point x € Z, which is not a
minimum for f, is given by

0(m o f)(x) = Om[f (x)]of (x).

Analogous results hold for concave functionals.
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