
International Journal of Solids and Structures 41 (2004) 7329–7349

www.elsevier.com/locate/ijsolstr
Nonlocal and gradient rate plasticity

Francesco Marotti de Sciarra *

Dipartimento di Scienza delle Costruzioni, Facolta’ di Ingegneria, Universita’ degli Studi di Napoli Federico II, 80125 Napoli, Italy

Received 11 May 2004

Available online 31 July 2004

This paper is dedicated to Angela on the occasion of her 8th birthday
Abstract

This paper deals with a formulation of nonlocal and gradient plasticity with internal variables. The constitutive

model complies with local internal variables which govern kinematic hardening and isotropic softening and with a

nonlocal corrective internal variable defined either as the sum between a new internal variable and its spatial weighted

average or as the gradient of a measure of plastic strain. The rate constitutive problem is cast in the framework provided

by the convex analysis and the potential theory for monotone multivalued operators which provide the suitable tools to

perform a theoretical analysis of such nonlocal and gradient problems. The validity of the maximum dissipation

theorem is assessed and constitutive variational formulations of the rate model are provided. The structural rate

problem for an assigned load rate is then formulated. The related variational formulation in the complete set of state

variable is contributed and the methodology to derive variational formulations, with different combinations of the state

variables, is explicitly provided. In particular the generalization to the present nonlocal and gradient model of the

principles of Prager–Hodge, Greenberg and Capurso–Maier is presented. Finally nonlocal variational formulations

provided in the literature are derived as special cases of the proposed model.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The increasing interest in generalizing continuum models of plasticity and damage has its origin in the

serious drawbacks of these classical theories when a strain softening behaviour is exhibited. In fact most

engineering materials, such as metals, concrete, fiber-reinforced materials and soils, show a loss of positive

definiteness of the tangent stiffness operator which yields to the localization of plastic deformations and of

damage in narrow bands until the occurrence of cracks appear.

The deformation pattern in a body in which a localization phenomenon occurs suddenly evolves from

relatively smooth into one in which shear bands of highly strained material appears whereas the remainder
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part of the body unloads. In classical theories of plasticity and damage the size of the localization zone is

unspecified due to the lack of any material internal length and, if the material does not have a residual

strength, the energy dissipated in the localized zone tends to zero as the mesh is refined (see e.g. Lasry and

Belytschko, 1988). Accordingly in a finite element analysis, the solution depends on the mesh size employed
since the localization band tends to the smallest finite element.

On the contrary, the presence of a length scale in plasticity theories reflects the ability of the micro-

structure to transmit information to neighbouring points within a certain distance and turns out to be a

material property linking the microstructure to the continuum. There are different theories in literature

which introduce a length scale in a continuum model in order to bypass the inadequacy of standard rate-

independent continuum models to deal with the problem of strain localization. One way is to consider

viscoplastic models (Needleman, 1988; Sluys and de Borst, 1992) or the Cosserat theory (Cosserat and

Cosserat, 1909; Ericksen and Truesdell, 1958). Other possibilities involve gradient of strains or of plastic
variables or are based on nonlocal (integral) theories.

The nonlocal theory has been proposed, at first, by Eringen (1966) and Eringen and Edelen (1972) and

then, for concrete and damaging materials, see e.g. Ba�zant et al. (1984) and Pijaudier-Cabot and Ba�zant
(1987). The key idea is to introduce, in the constitutive model, state variables defined in an average form

over a finite volume of the body (de Borst, 2001) and the material length parameter determines how the

value of the variable at a certain point is weighted (Ba�zant and Pijaudier-Cabot, 1988; Pijaudier-Cabot and

Benallal, 1993). The gradient plasticity is a variant of the nonlocal approach in which higher-order spatial

derivatives are introduced in the constitutive equations. It was first suggested by Dillon and Kratochvil
(1970), which motivated the consideration of strain gradient as one way to account for the interaction

among dislocation, and then by Aifantis (1987) and Coleman and Hodgdon (1985) for rigid plastic

materials and, subsequently, it has been developed in several papers, see e.g. M€uhlhaus and Aifantis (1991),

de Borst and M€uhlhaus (1992), de Borst et al. (1993, 1995) and de Borst (2001).

We consider here materials such that microstructural effects become significant only at the onset of

localization. Accordingly we assume that the classical continuum elastoplastic theory (without any nonlocal

effect) satisfactorily predicts the orientation of the localized deformation band.

In modern plasticity theory, the inelastic constitutive behaviour is described in terms of internal vari-
ables. In the nonlocal approach, the form of the constitutive relations is left unchanged and the yield

condition is modified by introducing a nonlocal internal variable. In this view, a thermodynamic formu-

lation of a nonlocal plastic model has been presented in Borino et al. (1999) in the hypothesis that the

inelastic behaviour is governed by a nonlocal internal variable describing isotropic hardening. In fact a

computational effective model has been proposed in Svedberg and Runesson (1998) in which the nonlocal

internal variable governing isotropic hardening is obtained as the difference between a nonlocal field and a

local field.

The aim of this paper is to cast nonlocal and gradient plasticity models with internal variables in the
framework of the convex analysis which provides the appropriate tools for a theoretical analysis of such

problems. It is also shown how it is possible to consistently derive nonlocal variational formulations to be

used for a subsequent finite element analysis.

In the present paper a unified constitutive model of nonlocal and gradient standard plasticity is set in the

framework of the generalized standard material introduced by Halphen and Nguyen (1975) and Nguyen

(1977). The free energy and the elastic domain are respectively defined in the product space of kinematic

and static generalized variables. The nonlocal and gradient behaviour is obtained by a suitable definition of

the free energy and a nonlocal version of the maximum dissipation theorem is proved. Then the response of
the material to a given total strain rate is developed and the related variational formulations are provided

by appealing to the properties of saddle functionals and of local subdifferentiability.

The structural rate problem is then addressed. An original variational formulation in the complete set of

local and nonlocal state variables is provided and the systematic derivation of variational formulations with
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different combinations of state variables is presented. In particular the generalization to the nonlocal and

gradient context of the classical variational principles of Prager and Hodge (1951), Greenberg (1949),

Capurso (1969), and Capurso and Maier (1970) involving the plastic multiplier, are provided.

Moreover, it is shown that the nonlocal model here proposed encompasses, as a special case, the con-
stitutive nonlocal (integral) models provided in Borino et al. (1999) and Borino and Failla (2001).

The variational formulations contributed in Borino et al. (1999) are recovered by a suitable special-

ization of the variational formulations proposed in this paper. A critical comparison between these vari-

ational formulations shows that the nonnegativeness of a quadratic form involving plastic multipliers,

appearing in a variational principle reported in the previously quoted paper, can be omitted by appealing to

the property of local convexity.

Finally the variational principle for gradient plasticity proposed by M€uhlhaus and Aifantis (1991), and

referred to in de Borst and M€uhlhaus (1992), Fleck and Hutchinson (2001) among others, is recovered as a
special case of the proposed formulation.
2. Nonlocal and gradient plasticity

We analyse a nonlocal elastoplastic structural problem defined on a regular bounded domain X of an

Euclidean space. The inelastic model is cast in the framework of internal variable theories of associated type

and the generalized standard material (Halphen and Nguyen, 1975) is considered.
The dual spaces of strains e and stresses r will be labelled by D and S respectively and the elastic strain

will be denoted by e 2 D. The internal variables account for the evolution of the hardening/softening

phenomena. Following the approach proposed by Halphen and Nguyen (1975), the kinematic (strain-like)

internal variables are denoted by j 2 Y, a1 2 Y1, a2 2 Y2 and the dual (stress-like) static internal variables

are X 2 Y0, v1 2 Y0
1, v2 2 Y0

2. From a mechanical point of view, the static internal variable v1 describes the
kinematic hardening, the variable v2 describes the nonlocal isotropic hardening and X describes the iso-

tropic softening behaviour.

It will be shown in the sequel that the rates of �j and a2 coincide with the plastic multiplier and the rate
of a1 has the direction of the inward normal to the elastic domain. The symbol ðð�; �ÞÞ denotes the inner

product in the dual spaces and has the mechanical meaning of the internal virtual work. For the Cauchy

model we have
ðð�; �ÞÞ ¼
Z
X
� � �dX;
where � denotes the simple (double) index saturation operation between vectors (tensors).

In order to properly define the constitutive model, it is necessary to introduce the saddle (convex–

concave) differentiable functional U : D�Y�Y1 �Y2 ! R (where R ¼ f�1 [R [ þ1g) representing
the free energy and the convex elastic domain C in the product space S �Y0 �Y0

1 �Y0
2.

The free energy is additively decomposed in the sum of a strictly convex potential UelðeÞ, representing the
elastic energy, and of a saddle functional Uinða1; a2; jÞ, convex in ða1; a2Þ and concave in j, which accounts

for inelastic phenomena. Such a decomposition corresponds to the mechanical assumption that the elastic

behaviour does not depend on the evolution of inelastic phenomena and has been usually adopted in
literature concerning local and gradient plasticity, see e.g. Lubliner (1990) Reddy and Martin (1991), Simo

et al. (1988), Str€omber and Ristinmaa (1996), and Svedberg and Runesson (1998).

Nonlocal effects can then be modelled by giving the following expression to the free energy:
Uðe; a1; a2; jÞ ¼ UelðeÞ þ Uinða1; a2; jÞ ¼ UelðeÞ þ ULða1; jÞ þ UNLða2Þ; ð1Þ
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where the free energy component ULða1; jÞ is saddle in ða1; jÞ and UNLða2Þ ¼ UNLðnða2ÞÞ is the convex

nonlocal part of the free energy.

A nonlocal plastic behaviour can be modelled by assuming that the functional UNL at a point x of the

body X depends on the entire field a2. This task can be achieved by considering the nonlocal kinematic
(strain-like) variable n 2 Z having the following parametric representation:
nðxÞ ¼ ðRa2ÞðxÞ; ð2Þ
where R : Y2 ! Z denotes a suitable linear regularization operator (Pijaudier-Cabot and Ba�zant, 1987;
Str€omber and Ristinmaa, 1996; Borino et al., 1999). The kinematic internal variable n turns out to be
nonlocal since its value at the point x of the body X depends on the entire field a2. Since a nonlocal

behaviour must be present for high space variation of the local variable a2, we assume that the kernel of R is

provided by uniform fields.

The expression (2) encompasses both nonlocal and gradient plasticity as shown hereafter.

• Nonlocal plasticity: A nonlocal kinematic field n can be obtained as a spatial weighted average of the

variable a2 in the form:
nðxÞ ¼ ðRa2ÞðxÞ ¼
1

V ðxÞ

Z
X
bxðyÞa2ðyÞdy; V ðxÞ ¼

Z
X
bxðyÞdy; ð3Þ
where bxðyÞ is a spatial weighting function depending on a material parameter called the internal length

scale and V ðxÞ is the representative volume at the point x.

From a computational point of view (see e.g. Svedberg and Runesson, 1998; Borino and Failla, 2001) it
is convenient to perform an additive decomposition of the nonlocal internal variable n in the form
nðxÞ ¼ 1

V ðxÞ

Z
X
cxðyÞa2ðyÞdy� a2ðyÞ; ð4Þ
where cxðyÞ is a spatial weighting function. The first term at the r.h.s. of (4) complies with a nonlocal
behaviour and the second term complies with a local behaviour. Denoting by DxðyÞ the Dirac delta centred

at the point x, the expression (4) can be modified in the form:
nðxÞ ¼ 1

V ðxÞ

Z
X
cxðyÞa2ðyÞdy�

Z
X
DxðyÞa2ðyÞdy; ð5Þ
and it turns out to be apparent that the expression (5) is of the same form of relation (3) by assuming

bxðyÞ ¼ cxðyÞ � V ðxÞDxðyÞ. Accordingly the nonlocal form (4) can be viewed as a special case of (3) which

will be referred to in the sequel.

• Gradient plasticity: The regularization operator is chosen as a differential operator (see e.g. M€uhlhaus
and Aifantis, 1991; de Borst and M€uhlhaus, 1992; de Borst, 2001) so that R assumes the following form:
nðxÞ ¼ ðRa2ÞðxÞ ¼ cðra2ÞðxÞ; ð6Þ
where r denotes the gradient operator and c is a length parameters which tends to 0 for V ! 0.

Accordingly the expression (2) provides in a unitary framework a nonlocal variable or a gradient one so

that, in the sequel, we will refer to the generic form of the nonlocal variable (2).

Let us now provide the constitutive relations for nonlocal and gradient plasticity. Recalling the
expression (2) of the nonlocal kinematic variable n, the constitutive relations can be obtained from the

saddle free energy (1) as follows:



F. Marotti de Sciarra / International Journal of Solids and Structures 41 (2004) 7329–7349 7333
ðr; v1; v2;�X Þ ¼ dUðe; a1; a2; jÞ ()

r ¼ dUelðeÞ;
v1 ¼ da1ULða1; jÞ;
v2 ¼ da2UNLðnða2ÞÞ ¼ R0 dUNLðnÞ ¼ R0v;
�X ¼ djULða1; jÞ;

8>><>>: ð7Þ
where we have set v ¼ dUNLðnÞ 2 Z0 and R0 : Z0 ! Y0
2 denotes the dual operator of R.

Note that the static internal variable v2, which is dual of the (local) kinematic internal variable a2, is a
global variable since its pointwise value depends upon the entire field v over the body X, i.e.

v2ðxÞ ¼ ðR0vÞðxÞ for any x 2 X.
Starting from (3), it is immediate to prove that the dual regularization operator for nonlocal plasticity is

given by
ðR0vÞðxÞ ¼
Z
X

1

V ðyÞ byðxÞvðyÞdy:
The operator R is self-adjoint, i.e. R0 ¼ R, if the representative volume V does not depend on the point x.
If a linear nonlocal hardening behaviour is assumed, the expression of UNL is given by
UNLða2Þ ¼
1

2
ððhnða2Þ; nða2ÞÞÞ ¼

1

2
ððhRa2;Ra2ÞÞ ¼

1

2

Z
X

h

V ðxÞ2
Z
X
byðxÞa2ðyÞdy

� �2
dx; ð8Þ
where h : Z ! Z0 is a positive hardening modulus so that we have v2 ¼ R0hnða2Þ ¼ ðR0hRÞa2.
In the case of gradient plasticity we have
UNLða2Þ ¼
1

2
ððhnða2Þ; nða2ÞÞÞ ¼

1

2
ððhRa2;Ra2ÞÞ ¼

1

2

Z
X
hc2ra2 � ra2 dx; ð9Þ
and the duality between v2 ¼ R0v and a2 yields
ððv;Ra2ÞÞ ¼ ððR0v; a2ÞÞ 8a2 2 Y2; v 2 Z0
which provides the Green’s formula:
Z
X
v � ra2 dx ¼ �

Z
X
ðdivvÞa2 dxþ

Z
oX

v � nðCa2Þds;
where n is the outward normal at the boundary oX of X and Ca2 yields the values of a2 at the boundary of

X, i.e. Ca2 ¼ a2joX.
The constitutive model is completed by introducing the elastic domain C which is defined in the space of

stresses and of static internal variables ðr; v1; v2;X Þ as the level set of a convex yield mode

G : S�Y0
1 �Y0

2 �Y0 ! R [ fþ1g in the form:
C ¼ fðr; v1; v2;X Þ 2 S�Y0
1 �Y0

2 �Y0 : Gðr; v1; v2;X Þ6 0g ð10Þ
provided that the minimum of G is negative.
The constitutive model can be formulated in a more convenient way by defining the following gen-

eralized vectors collecting together local and nonlocal variables:
e ¼
e
0

0

24 35; e ¼
e
a1
a2

24 35; p ¼
p

�a1
�a2

24 35; r ¼
r
v1
v2

24 35: ð11Þ
The vectors e, e, p and r represent the generalized vectors of total strain, elastic strain, plastic strain and

stress. Accordingly two generalized spaces bD ¼ D�Y1 �Y2 and cS ¼ S�Y0
1 �Y0

2 denotes the gen-
eralized spaces of strains and of stresses and the scalar product between generalized vectors is
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ððr; eÞÞ ¼ ððr; eÞÞ þ ððv1; a1ÞÞ þ ððv2; a2ÞÞ. In the sequel, for simplicity, the term generalized will be omitted

since no confusion can arise.
3. The elastic domain

In the applications the yield mode, defining the elastic domain C, is usually written in the form:
Gðr;X Þ ¼ Gðr; v1; v2;X Þ ¼ gðr; v1Þ � v2 � X � r0; ð12Þ
where g is a convex function and r0 represents a constant scalar value which characterize the initial yield

limit. The choice of the function g depends on the particular yield criterion adopted for the material, see e.g.

Salenc�on (1983).

The flow rule can be formulated in terms of the normal cone NC to the elastic domain C as follows:
ð _p; _jÞ ¼ NCðr;X Þ ¼ o tC ðr;X Þ () ð _p;� _a1;� _a2; _jÞ ¼ NCðr; v1; v2;X Þ; ð13Þ
where tCðr;X Þ is the indicator of the elastic domain and turns out to be zero if ðr;X Þ 2 C and þ1
otherwise (see Appendix C). The static internal variable X and its dual kinematic internal variable j are

kept separate from r and p respectively to point out that they are associated with a softening behaviour.

The flow rule (13) can then be reformulated in the following three equivalent forms:
ð _p; _jÞ 2 NCðr;X Þ; ðr;X Þ 2 oDð _p; _jÞ;
tC ðr;X Þ þ Dð _p; _jÞ ¼ ððr; _pÞÞ þ ððX ; _jÞÞ;

ð14Þ
where D : bD �Y ! R [ fþ1g is the plastic dissipation associated with the plastic flow ð _p; _jÞ whose

expression is given by the support functional of the elastic domain C:
Dð _p; _jÞ ¼ supfðð�r; _pÞÞ þ ðð�X ; _jÞÞjð�r; �X Þ 2 Cg
¼ supfðð�r; _pÞÞ � ððv1; _a1ÞÞ � ððv2; _a2ÞÞ þ ððX ; _jÞÞjð�r; v1; v2;X Þ 2 Cg: ð15Þ
The sup operation is performed with respect to the over barred state variables �. Explicitly the relations (14)
are
ð _p;� _a1;� _a2; _jÞ 2 NCðr; v1; v2;X Þ;
ðr; v1; v2;X Þ 2 oDð _p;� _a1;� _a2; _jÞ;
tCðr; v1; v2;X Þ þ Dð _p;� _a1;� _a2; _jÞ ¼ ððr; _pÞÞ � ððv1; _a1ÞÞ � ððv2; _a2ÞÞ þ ððX ; _jÞÞ:

8<:

Let us express the flow rule (14)1 in terms of the plastic multiplier k. Assuming that G is continuous in C and

noting that tCðr;X Þ ¼ tR� ½Gðr;X Þ� where R� collects the nonpositive scalars, a subdifferential rule con-

tributed in Romano (1995) yields
o tC ðr;X Þ ¼ oðtR� � GÞðr;X Þ ¼ o tR� ½Gðr;X Þ�dGðr;X Þ 8ðr;X Þ 2 C:
Since o tR� ½Gðr;X Þ� ¼ NR� ½Gðr;X Þ�, we have that the flow rule (14)1 can be rewritten in the following

equivalent forms:
ð _p; _jÞ 2 NCðr;X Þ ¼ o tC ðr;X Þ;
ð _p; _jÞ ¼ kdGðr;X Þ with k 2 NR� ½Gðr;X Þ� ¼ o tR� ½Gðr;X Þ�;
ð _p; _jÞ ¼ kdGðr;X Þ with kP 0; Gðr;X Þ6 0; kGðr;X Þ ¼ 0;

ð16Þ
where k is the plastic multiplier.



F. Marotti de Sciarra / International Journal of Solids and Structures 41 (2004) 7329–7349 7335
Recalling the expression (12) of the yield mode, the relation (16)3 is explicitly given by
_p ¼ kdrGðr; v1; v2;X Þ ¼ kdrgðr; v1Þ;
� _a1 ¼ kdv1Gðr; v1; v2;X Þ ¼ kdv1gðr; v1Þ;
� _a2 ¼ kdv2Gðr; v1; v2;X Þ ¼ �k;

_j ¼ kdXGðr; v1; v2;X Þ ¼ �k

ð17Þ
under the complementarity conditions
kP 0; gðr; v1Þ � v2 � X � r0 6 0; k½gðr; v1Þ � v2 � X � r0� ¼ 0: ð18Þ
As a result, the rate of the kinematic internal variable _a2 coincides with the plastic multiplier so that the

parametric representation of _n is given by _n ¼ Rk. Since in the elastic range j ¼ a2 ¼ 0, the relations (17)3
and (17)4 yield the equality j ¼ �a2.

3.1. Nonlocal form of dissipation and of Lagrangian functional

It is well known that the principle of the maximum dissipation of Hill (Hill, 1950; Simo, 1988) plays a

central role in local standard plasticity. This subsection shows that an analogous principle can be assessed

for the proposed model of nonlocal standard plasticity.

Proposition 1 (Maximum dissipation). Let ðr;X Þ and ð _p; _jÞ fulfill the flow rule (13). The dissipation Dð _p; _jÞ
attains its maximum at the point ðr;X Þ and can be written in the form
Dð _p; _jÞ ¼ ððr; _pÞÞ þ ððX ; _jÞÞ ¼ ððr; _pÞÞ � ððv1; _a1ÞÞ � ððv2; _a2ÞÞ þ ððX ; _jÞÞ: ð19Þ
Proof. The pairs ðr;X Þ and ð _p; _jÞ fulfill the flow rule (13) so that the Fenchel’s equality (14)3 is met. Hence

we have
Dð _p; _jÞ ¼ ððr; _pÞÞ þ ððX ; _jÞÞ � tCðr;X Þ ¼ ððr; _pÞÞ þ ððX ; _jÞÞ
since the indicator tC is zero being the static variables admissible, i.e. ðr;X Þ 2 C. h

Following the arguments presented in Romano et al. (1992) for local plasticity, it can be proved that the

dissipation D is nonnegative if the origin of the strain space bD �Y belongs to the elastic domain C.
The nonlocal dissipation for the Cauchy model is then given by
Dð _p; _a1; _a2; _jÞ ¼
Z
X
r � _pdx�

Z
X
v1 � _a1 dx�

Z
X

vðxÞ
V ðxÞ �

Z
X
bxðyÞ _a2ðyÞ

� �
dxþ

Z
X
X _jdx
and, for gradient plasticity, it turns out to be
Dð _p; _a1; _a2; _jÞ ¼
Z
X
r � _pdx�

Z
X
v1 � _a1 dx�

Z
X
cv � r _a2 dxþ

Z
X
X _jdx:
Let us now derive the expression of the Lagrangian L associated with the dissipation D. Recalling that

tCðr;X Þ ¼ tR� ½Gðr;X Þ� and noting that tR� ½Gðr;X Þ� and tRþðkÞ are conjugate functionals (Hiriart-

Urruty and Lemarechal, 1993), it turns out to be
tCðr;X Þ ¼ tR� ½Gðr;X Þ� ¼ sup
�k

f�kGðr;X Þ � tRþð�kÞg ¼ � inf
�k
f��kGðr;X Þ þ tRþð�kÞg; ð20Þ
where the equality supð�Þ ¼ � infð�=�Þ has been used.
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Accordingly the expression (15) of the dissipation D associated with a plastic flow ð _p; _jÞ becomes
Dð _p; _jÞ ¼ sup
�r;�X

fðð�r; _pÞÞ þ ðð�X ; _jÞÞ � tCð�r; �X Þg ¼ sup
�r;�X

inf
�k
fðð�r; _pÞÞ þ ðð�X ; _jÞÞ � �kGð�r; �X Þ þ tRþð�kÞg

¼ sup
�r;�X

inf
�k
Lð�k; �r; �X Þ;
where Lð�k; �r; �X Þ ¼ ðð�r; _pÞÞ þ ðð�X ; _jÞÞ � �kGð�r; �X Þ þ tRþð�kÞ denotes the Lagrangian, associated with D,
which turns out to be concave in ð�r; �X Þ and convex in �k for any given plastic flow ð _p; _jÞ. A saddle point is

attained for a pair ðk; r;X Þ such that the plastic flow ð _p; _jÞ fulfils the normality rule (16) at ðr;X Þ:

Dð _p; _jÞ ¼ sup

�r;�X
inf
�kP 0

fðð�r; _pÞÞ þ ðð�X ; _jÞÞ � �kGð�r; �X Þg ¼ ððr; _pÞÞ þ ððX ; _jÞÞ:
4. The constitutive rate model

The constitutive model of nonlocal and gradient plasticity can be formulated by considering the addi-

tivity of strains, the constitutive relations (7) and the flow rule (14):
e ¼ eþ p ðadditivity of strainsÞ;
ð _p; _jÞ 2 NCðr;X Þ ðflow ruleÞ;
ðr;�X Þ ¼ dUðe; jÞ ðelastic relationÞ:

8<: ð21Þ
To define the relevant rate model, it is compelling to reformulate the constitutive relations (21) in terms of

the rate of the state fields.

The relation between the stress rate ð _r; _X Þ and the plastic flow ð _p; _jÞ can be achieved by considering the

Prager’s consistency condition:
ðð _r; _pÞÞ þ ðð _X ; _jÞÞ ¼ 0 8ð _p; _jÞ 2 NCðr;X Þ; ð _r; _pÞ 2 TCðr;X Þ; ð22Þ

where TCðr;X Þ is the tangent cone to the elastic domain C at the point ðr;X Þ. If ðr;X Þ belong to the interior

of C, the generalized stress rate ð _r; _X Þ is arbitrary. On the contrary if ðr;X Þ belongs to the boundary of C,
the tangent cone turns out to be a proper subset of bS �Y0.

The normality rule (21)2 and the Prager’s consistency condition (22) can be collected in a unique relation.

In fact, setting T ¼ TCðr;X Þ and N ¼ NCðr;X Þ, condition (22) is equivalent to the equality:
tTð _r; _X Þ þ tNð _p; _jÞ ¼ ðð _r; _pÞÞ þ ðð _X ; _jÞÞ: ð23Þ

By virtue of the equality tNð _p; _jÞ ¼ t�

Tð _p; _jÞ proved in Appendix A, the relation (23) can be rewritten in

the three equivalent forms:
tT ð _r; _X Þ þ t�
Tð _p; _jÞ ¼ ðð _r; _pÞÞ þ ðð _X ; _jÞÞ;

ð _r; _X Þ 2 o t�
T ð _p; _jÞ ¼ o tN ð _p; _jÞ;

ð _p; _jÞ 2 o tT ð _r; _X Þ ¼ NTð _r; _X Þ:
ð24Þ
The rate elastic constitutive relation can be obtained from the elastic relation (21)3:
ð _r;� _X Þ ¼ d2Uðe; jÞð _e; _jÞ ()

_r ¼ d2UelðeÞ _e ¼ E _e;
_v1 ¼ d2

a1
ULða1; jÞ _a1 ¼ H1 _a1;

_v2 ¼ d2
a2
UNLðnða2ÞÞ _a2 ¼ ½R0 d2UNLðnÞR� _a2 ¼ H2 _a2;

� _X ¼ d2
jULða1; jÞ _j ¼ H _j;

8>>><>>>: ð25Þ
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where E ¼ d2UelðeÞ denotes the tangent elastic modulus, H1 ¼ d2
a1
ULða1; jÞ is the tangent kinematic hard-

ening modulus, H2 ¼ R0 d2UNLðnÞR provides the tangent isotropic hardening modulus and H ¼ d2
jULða1; jÞ

represents the tangent isotropic softening modulus. For a linear behaviour of the type (8), we have

H2 ¼ R0hR.
Denoting by H ¼ diag½E;H1;H2;H� the matrix collecting the elastic and hardening/softening tangent

moduli, the relations (25) can be expressed in the form ð _r;� _X Þ ¼ dWð _e; _jÞ by introducing the saddle

(convex in _e and concave in _j) rate elastic potential W : bD �Y ! �R (where R ¼ f�1 [R [ þ1g):

Wð _e; _jÞ ¼ 1

2
� Hð _e; _a1; _a2; _jÞ; ð _e; _a1; _a2; _jÞ 	

¼ 1
2
ððE _e; _eÞÞ þ 1

2
ððH1 _a1; _a1ÞÞ þ 1

2
ððH2 _a2; _a2ÞÞ þ 1

2
ððH _j; _jÞÞ: ð26Þ
The constitutive model of nonlocal and gradient rate plasticity is then given by
_e ¼ _eþ _p ðadditivity of strain ratesÞ;
ð _p; _jÞ 2 NTð _r; _X Þ ðrate flow ruleÞ;
ð _r;� _X Þ ¼ dWð _e; _jÞ ðrate elastic relationÞ:

8<: ð27Þ
In order to derive a variational formulation pertaining to the proposed nonlocal and gradient elasto-

plastic model, it is compelling to consider alternative expressions of the rate elastic relation. To this end we

introduce the conjugate saddle functional W� : cS �Y0 ! �R which represents the complementary rate

elastic potential defined by
W�ð _r; _X Þ ¼ inf
_j

sup
_e

fðð _r; _eÞÞ þ ðð _X ; _jÞÞ �Wð _e; _jÞ; g
and the convex functionals N : cS �Y ! R [ þ1g and N� : bD �Y0 ! R [ þ1g, associated with W and

W�, defined by
Nð _r; _jÞ ¼ � inf
_X
fðð _X ; _jÞÞ �W�ð _r; _X Þg ¼ sup

_e

fðð _r; _eÞÞ �Wð _e; _jÞg;

N�ð _e;� _X Þ ¼ � inf
_j
fðð _X ; _jÞÞ �Wð _e; _jÞg ¼ sup

_r

fðð _r; _eÞÞ �W�ð _r; _X Þg:
ð28Þ
The rate elastic relation (27)3 can then be inverted according to the following equivalent expressions:
ð _r;� _X Þ ¼ dWð _e; _jÞ; ð _e; _jÞ ¼ dW�ð _r;� _X Þ;
ð _e; _X Þ ¼ dNð _r; _jÞ; ð _r; _jÞ ¼ dN�ð _e; _X Þ

ð29Þ
which can be equivalently rewritten in terms of Fenchel’s equalities:
� N�ð _e; _X Þ þWð _e; _jÞ ¼ �ðð _X ; _jÞÞ; Nð _r; _jÞ þWð _e; _jÞ ¼ ðð _r; _eÞÞ;
� Nð _r; _jÞ þW�ð _r;� _X Þ ¼ �ðð _X ; _jÞÞ; N�ð _e; _X Þ þW�ð _r;� _X Þ ¼ ðð _r; _eÞÞ;
N�ð _e; _X Þ þ Nð _r; _jÞ ¼ ðð _r; _eÞÞ þ ðð _X ; _jÞÞ Wð _e; _jÞ þW�ð _r;� _X Þ ¼ ðð _r; _eÞÞ � ðð _X ; _jÞÞ:

ð30Þ
4.1. Variational formulations for a given total strain rate

The rate constitutive model (27) is governed by a monotone multivalued operator (see Appendix B) since

the equality NT ¼ otT holds. Accordingly a direct formulation of the constitutive variational principles

can be obtained by resorting to the potential theory for monotone multivalued operators contributed in

Romano et al. (1993).
The variational formulation in terms of the state variables ð _r; _p; _e; _X ; _jÞ, for a given total strain rate _e, is

provided in the next statement. The related proof is reported in Appendix B.
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Proposition 2. For a given _e, the quintet ð _r; _e; _X ; _p; _jÞ is a solution of the convex optimization problem:
min
_e; _X ; _p; _j

stat
_r
Rð _r; _e; _X ; _p; _jÞ;
where
Rð _r; _e; _X ; _p; _jÞ ¼ N�ð _e; _X Þ þ tNð _p; _jÞ � ðð _r; _eþ _pÞÞ � ðð _X ; _jÞÞ þ ðð _r; _eÞÞ ð31Þ

if and only if it is a solution of the nonlocal elastoplastic rate model (27).

The expression (31) shows that the potential R turns out to be convex in the state variables ð _e; _X ; _p; _jÞ
and linear in _r. Accordingly a stationarity point for R can be found by performing the minimum of R with

respect to the variables ð _e; _X ; _p; _jÞ and by enforcing the stationarity condition with respect to _r.
It is proved in Appendix B that a direct integration of the constitutive relations (27) provides the po-

tential R. Let us now show that the state variables ð _r; _e; _X ; _p; _jÞ provide a stationarity point for R if and
only if the constitutive relations (27) are recovered. In fact we have
ðo; o; 0; o; 0Þ 2 oRð _r; _e; _X ; _p; _jÞ ()

ðo; 0Þ 2 oð_e; _X Þ R, o

0

� �
¼ dN�ð _e; _X Þ � _r

_j

� �
;

ðo; 0Þ 2 oð _p; _jÞ R , o

0

� �
2 o tN ð _p; _jÞ � _r

_X

� �
;

o 2 o _rR , o ¼ �ð _eþ _pÞ þ _e;

8>>>>><>>>>>:
ð32Þ
where oð�ÞR denotes the subdifferential of R with respect to �. If R is differentiable with respect to the
variable �, the subdifferential turns out to be the usual differential. From (32)1 and recalling the equivalent

expressions (29), we have
ð _r; _jÞ ¼ dN�ð _e; _X Þ () ð _r;� _X Þ ¼ dWð _e; _jÞ

so that the rate elastic relation (27)3 has been obtained. From (32)2 and recalling the relations (24), we have
ð _r; _X Þ 2 o tN ð _p; _jÞ () ð _p; _jÞ 2 o tT ð _r; _X Þ ¼ NTð _r; _X Þ

which coincides to the rate flow rule (27)2. Finally the additivity of strain rates is given by (32)3 and the

constitutive model is recovered. An analogous procedure can be followed to prove the variational for-

mulations hereafter obtained.

Several variational formulations can be obtained by enforcing the fulfilment of the constitutive relations

(27) in the expression of the potential R. If the additive decomposition (27)1 is fulfilled and the rate elastic
relation is met in the equivalent form (30)1, the potential (31) becomes
R1ð _p; _jÞ ¼ Wð_e� _p; _jÞ þ tNð _p; _jÞ ð33Þ

which is convex in _p and locally subdifferentiable (Romano, 1995) in _j.

Let the rate flow rule (27)2 and the rate elastic relation (27)3 be fulfilled in the form of Fenchel’s equalities

(23) and (30)4, the potential (31) thus becomes
R2ð _r; _X Þ ¼ �W�ð _r;� _X Þ � tTð _r; _X Þ þ ðð _r; _eÞÞ ð34Þ

which is concave in _r and locally subdifferentiable in _X .

Hence the next statement can be inferred.

Proposition 3. For a given _e; we have

i(i) the pair f _p; _jg is a solution of the optimization problem: min _p stat _jR1ð _p; _jÞ,
(ii) the pair f _r; _Xg is a solution of the optimization problem: max _r stat _XR2ð _r; _X Þ, if and only if it is a solution

of the nonlocal and gradient elastoplastic rate model (27).
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Additional variational formulations depending on different combinations of the state variables can be

obtained following the same reasoning.

It is useful to derive a constitutive variational formulation in terms of the plastic multiplier k in order to

perform, in Section 5.2, a comparison with an analogous functional provided in Borino et al. (1999) in the
case of linear elastic and hardening behaviour.

To this end, we note that the indicator tNð _p; _jÞ, appearing in (33), requires that the plastic flow fulfils

the flow rule, that is ð _p; _jÞ 2 NCðr;X Þ. Recalling the expression (26) of the rate elastic energy W and the

expression (17) of the flow rule, the functional R1ð _p; _jÞ can be rewritten in terms of the plastic multiplier k in
the form:
R3ðkÞ ¼ 1
2
ððE_e; _eÞÞ � ððE_e; kdrgðr; v1ÞÞÞ þ 1

2
ððEkdrgðr; v1Þ; kdrgðr; v1ÞÞÞ

þ 1
2
ððH1kdv1gðr; v1Þ; kdv1gðr; v1ÞÞÞ þ 1

2
ððH2k; kÞÞ þ 1

2
ððHk; kÞÞ ð35Þ
subject to the conditions kP 0;GðrðkÞ;X ðkÞÞ6 0; kGðrðkÞ;X ðkÞÞ ¼ 0.

By dropping the constant term ððE_e; _eÞÞ, we have

Proposition 4. For a given _e, the plastic multiplier k is a solution of the optimization problem:
statfPðkÞ s:t: kP 0; GðrðkÞ;X ðkÞÞ6 0; kGðrðkÞ; X ðkÞÞ ¼ 0g;
where
PðkÞ ¼ 1
2
ððEkdrgðr; v1Þ; kdrgðr; v1ÞÞÞ � ððE_e; kdrgðr; v1ÞÞÞ þ 1

2
ððH1kdv1gðr; v1Þ; kdv1gðr; v1ÞÞÞ

þ 1
2
ððH2k; kÞÞ þ 1

2
ððHk; kÞÞ
if and only if it is a solution of the nonlocal elastoplastic rate model (27).

Here ‘‘s.t.’’ stands for ‘‘subject to’’. The specialization of the functional P to the case of nonlocal

plasticity for the Cauchy model is
PðkÞ ¼ 1

2

Z
X
Ekdrgðr;v1Þ � kdrgðr;v1Þdx�

Z
X
E_e � kdrgðr;v1Þdxþ

1

2

Z
X
H1kdv1gðr;v1Þ � kdv1gðr;v1Þdx

þ 1

2

Z
X

h

V ðxÞ2
Z
X
bxðyÞkðyÞdy

� �2
dxþ 1

2

Z
X
Hk2 dx;
and to the case of gradient plasticity is
PðkÞ ¼ 1

2

Z
X
Ekdrgðr;v1Þ � kdrgðr;v1Þdx�

Z
X
E_e � kdrgðr;v1Þdxþ

1

2

Z
X
H1kdv1gðr;v1Þ � kdv1gðr;v1Þdx

þ 1

2

Z
X
hc2rk � rkdxþ 1

2

Z
X
Hk2 dx:
5. The structural rate problem for nonlocal plasticity

Let us now analyse the rate response of an elastoplastic structural problem having a nonlocal consti-

tutive behaviour in the form previously defined. Displacements are assumed to belong to the Sobolev space

U ¼ HmðXÞ of fields which are square integrable in X together with their distributional derivatives up to the

order m (Brezis, 1983). Conforming displacement fields fulfil linear constraint conditions and belong to a
closed linear subspace L 
 U.
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The kinematic operator B 2 LinfU;Dg is a bounded linear operator from U to the Hilbert space of

square integrable strain fields. Denoting by F the subspace of external forces, which is dual of U, the

equilibrium operator B0 2 LinfS;Fg is dual of B. The symbol h�; �i denotes the duality pairing between U
and its dualF. Let ‘ ¼ ft; bg 2 F be the external loads where t and b denote tractions and body forces. No
imposed strains and displacements are considered for simplicity but they may be easily included.

The equilibrium equation, between external forces f and stresses r, and the compatibility condition,

between strains e and displacements u, are given by
f ¼ B0r where f 2 F; r 2 S; e 2 Bu where e 2 D; u 2 U:
The relation between reactions and displacements is assumed to be given by
r 2 o� ðuÞ or equivalently u 2 o� �ðrÞ;

where � : U ! R [ f�1g is a concave functional and � � : F ! R [ f�1g represents its conjugate

(Hiriart-Urruty and Lemarechal, 1993). Different expressions can be given to the functional � depending

on the type of external constraints such as bilateral, unilateral, elastic or convex. A survey of the particular

expression assumed by the functional � in each of these cases can be found in Romano (2002). For future

reference we report the expressions of � and � � in the case of external frictionless bilateral constraints with

homogeneous boundary conditions. Denoting by L the subspace of conforming displacements and by

R ¼ L? the subspace of the external constraint reactions, it turns out to be
� ðuÞ ¼ uLðuÞ ¼
0 if u 2 L;
�1 otherwise;

�
� �ðrÞ ¼ uL?ðrÞ ¼ 0 if r 2 L?;

�1 otherwise;

�

being ? the orthogonal complement. Accordingly the relation r 2 o� ðuÞ is equivalent to state u 2 L and

r 2 R ¼ L?, i.e. hr; vi ¼ 0 for any conforming displacement v 2 L.

Defining the pair of dual operators B ¼ ½B 0 0 �T : U ! bD and B
0 ¼ ½B0 0 0 � : cS ! F, the

relations governing the nonlocal and gradient structural rate problem of the body X for a given load rate _‘,
starting from a known state, are given by
B
0
_r ¼ _‘þ _r ðequilibrium rateÞ;

B _u ¼ _eþ _p ðcompatibility rateÞ;
ð _r; _jÞ ¼ dN�ð _e; _X Þ ðrate elastic relationÞ;
ð _r; _X Þ 2 o tN ð _p; _jÞ ðrate flow ruleÞ;
_u 2 o� �ð_rÞ ðrate external relationÞ:

8>>>>><>>>>>:
ð36Þ
The structural problem can be recast in the following operator form:
0

o
o

0

o

0

0

26666666666664

37777777777775
2

0 B
0

0 0 0 0 �IF
B 0 �IbD 0 �IbD 0 0

0 �IbS 0 0 0

dN�

0 0 0 �IY 0
0 �IbS 0 0 0

o tN

0 0 0 �IY0 0

�IU 0 0 0 0 0 o� �

266666666666664

377777777777775

_u
_r
_e

_X
_p

_j
_r

26666666666664

37777777777775
�

_‘
o
o

0

o

0

0

26666666666664

37777777777775
;

where I� denotes the identity in the space �.
The conservativity of the above structural operator is based on the conservativity of the constitutive

operator C and can be proved following a reasoning similar to the one reported in Appendix B. A direct
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integration of the structural operator provides the following potential in the complete set of state variables

is thus obtained:
Xð _u; _r; _e; _X ; _p; _j; _rÞ ¼ N�ð _e; _X Þ þ tNð _p; _jÞ þ � �ðrÞ þ ðð _r;B _uÞÞ � ðð _r; _eþ _pÞÞ � ðð _X ; _jÞÞ þ h _‘þ _r; _ui:
ð37Þ
The potential X is linear in ð _u; _rÞ, convex in ð _e; _X ; _p; _jÞ and concave in _r. We then have

Proposition 5. A set ð _u; _r; _e; _X ; _p; _j; _rÞ is a solution of the nonlocal and gradient rate elastoplastic structural

problem if and only if it turns out to be a stationarity point for X.

A family of potentials can be recovered from X by enforcing the relations (36). The stationary points of
these potentials provide a solution of the structural problem.

5.1. Variational principles

Let us now derive a variational principle for nonlocal and gradient plasticity which specializes to the

Prager-Hodge principle in the case of local plasticity (Prager and Hodge, 1951). It can be obtained from X
by imposing the equilibrium rate equation (36)1, the rate elastic relation (36)3 and the rate flow rule (36)4.

The relations (36)3 and (36)4 can be written, in terms of Fenchel’s equality, according to (30)4 and (23) so

that we get the locally differentiable functional:
X1ð _r; _X Þ ¼ �W�ð _r;� _X Þ � tTð _r; _X Þ þ � �ðB0
_r� _‘Þ: ð38Þ
The following statement thus holds.

Proposition 6. The pair ð _r; _X Þ is a solution of the optimization problem:
max
_r

stat
_X
X1ð _r; _X Þ
if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).

Let us now derive a one-field potential which specializes to the Greenberg principle in the case of local

plasticity (Greenberg, 1949). We enforce in the expression (37) of X the compatibility rate condition (36)2,

the rate elastic relation (36)3 in the form of Fenchel’s equality (30)1, the rate flow rule (36)4 in terms of
Fenchel’s equality (23) and the rate external relation (36)5 in terms of Fenchel’s equality:
� ðuÞ þ � �ðrÞ ¼ hr; ui ð39Þ
to get the potential
X2ð _u; _r; _X ; _p; _jÞ ¼ WðB _u� _p; _jÞ � tTð _r; _X Þ � � ðuÞ þ ðð _r; _pÞÞ þ ðð _X ; _jÞÞ � h _‘; _ui ð40Þ
which is convex in ð _u; _pÞ and concave in ð _r; _X ; _jÞ.
We thus have

Proposition 7. The set ð _u; _r; _X ; _p; _jÞ is a solution of the saddle problem:
min
_u; _p

max
_r; _X ; _j

X2ð _u; _r; _X ; _p; _jÞ
if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).
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In order to eliminate the quartet ð _r; _X ; _p; _jÞ from the independent variables of the potentialX2, we define

the following convex functional:
W ðB _uÞ ¼ inf
_p

sup
_r; _X ; _j

fWðB _u� _p; _jÞ � tTð _r; _X Þ þ ðð _r; _pÞÞ þ ðð _X ; _jÞÞg: ð41Þ
Substituting (41) in the potential X2, we get the convex functional:
X3ð _uÞ ¼ W ðB _uÞ � � ðuÞ � h _‘; _ui ð42Þ
so that the next statement holds.

Proposition 8. The displacement rate _u is a solution of the convex optimization problem:
min
_u

X3ð _uÞ
if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).

Let us now derive from the Propositions 6 and 8 the corresponding variational formulations in which the

plastic multiplier explicitly appears as an independent variable.
The variational principle in ð _r; kÞ has been introduced by Capurso (1969); Capurso and Maier (1970) for

local plasticity. Its counterpart for nonlocal and gradient plasticity can be obtained from (38) by modifying

the expression of tTð _r; _X Þ according to the result provided in Appendix A:
tTð _r; _X ; kÞ ¼ ðð _r; kdrGðr;X ÞÞÞ � ðð _X ; kÞÞ � tRþðkÞ if Gðr;X Þ ¼ 0;
tbS�Y0 ð _r; _X Þ if Gðr;X Þ < 0:

(
ð43Þ
Taking into account the above expression (43), the expression (38) of the potential X1 can be reworked to

provide the next statement.

Proposition 9. A triplet ð _r; _X ; kÞ is a solution of the optimization problem:
min
k

max
_r

stat
_X
X4ð _r; _X ; kÞ;
where
X4ð _r; _X ; kÞ ¼ �W�ð _r;� _X Þ þ � �ðB0
_r� _‘Þ

þ �ðð _r; kdrGðr;X ÞÞÞ þ ðð _X ; kÞÞ þ tRþðkÞ if Gðr;X Þ ¼ 0;
� tbS�Y0 ð _r; _X Þ if Gðr;X Þ < 0

( )

if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).

To get the nonlocal variational principle in ð _u; kÞ, which is the counterpart of the one introduced by

Capurso (1969) and Capurso and Maier (1970) for local plasticity, we insert the expression (43) into the
expression (41) of W in order to explicitly introduce the plastic multiplier k:
W ðB _u; kÞ ¼ inf
_p

sup
_r; _X ; _j

fWðB _u� _p; _jÞ þ ðð _r; _pÞÞ þ ðð _X ; _jÞÞ

þ �ðð _r; kdrGðr;X ÞÞÞ þ ðð _X ; kÞÞ þ tRþðkÞ if Gðr;X Þ ¼ 0;
� tbS�Y0 ð _r; _X Þ if Gðr;X Þ < 0:

( )
ð44Þ
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Hence it turns out to be

Proposition 10. A pair ð _u; kÞ is a solution of the convex optimization problem:
min
_u;k

X5ð _u; kÞ;
where
X5ð _u; kÞ ¼ W ð�B _u; kÞ � � ð _uÞ � h _‘; _ui ð45Þ
if and only if it is a solution of the nonlocal and gradient elastoplastic structural rate model (36).

5.2. Comparison with existing results

The nonlocal constitutive model and the related variational principles contributed in Borino et al. (1999)

can be recovered as a special case of the treatment developed in this paper. In fact let us consider the
following expression of the free energy
Uðe; a2Þ ¼ UelðeÞ þ UNLðnða2ÞÞ ð46Þ
which is convex in ðe; a2Þ, and let the elastic domain be defined in the form:
C ¼ fðr; v2Þ 2 S�Y0
2 : Gðr; v2Þ ¼ gðrÞ � v2 6 0g: ð47Þ
The expressions (46) and (47) show that inelastic phenomena are governed by the nonlocal free energy UNL

and no local plastic behaviour is considered. Note that, in the notation adopted in Borino et al. (1999); the

kinematic internal variable a2 and the nonlocal static internal variable v2 are labelled j and X respectively.

Remark 11. In Borino and Failla (2001), the constitutive model provided in Borino et al. (1999) is enhanced

following the proposal made in Str€omber and Ristinmaa (1996). Actually, in addition to the state variables

ðe; a2Þ a local internal variable j 2 Y and its dual X 2 Y0 are introduced in order to account for isotropic

softening. This model can be recovered from the model proposed in the present paper by considering the
following expressions for the free energy and for the elastic domain:
Uðe; j; a2Þ ¼ UelðeÞ þ ULðjÞ þ UNLðnða2ÞÞ;
C ¼ fðr;X ; v2Þ 2 S�Y0 �Y0

2 : Gðr;X ; v2Þ ¼ gðrÞ � X � v2 6 0g:
If the expressions (46) and (47) are considered, the variational formulation of the constitutive rate model

reported in Proposition 4 becomes

Proposition 12. For a given _e, the plastic multiplier k is a solution of the optimization problem:
statfPðkÞ s:t: kP 0; GðrðkÞ; v2ðkÞÞ6 0; kGðrðkÞ; v2ðkÞÞ ¼ 0g;
where
PðkÞ ¼ 1
2
ððEkdgðrÞ; kdgðrÞÞÞ � ððE_e; kdgðrÞÞÞ þ 1

2
ððH2k; kÞÞ
if and only if it is a solution of the nonlocal elastoplastic rate model proposed in Borino et al. (1999).

The expression of the potential PðkÞ coincides with the expression ofP½k� reported in Borino et al. (1999)

by noting the equality ððH2k; kÞÞ ¼ ððR0 d2UNLðnÞRk; kÞÞ ¼ ððd2UNLðnÞRk;RkÞÞ. It is worth noting that the
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nonnegativeness condition of the quadratic term H2k � kþ EkdgðrÞ � kdgðrÞ, which has been introduced in

the statement of the analogous variational formulation reported in the quoted paper, is inessential as shown

in Proposition 12 above where the minimum set of essential conditions is reported.

Assuming bilateral frictionless external constraints, the Proposition 7 involving the potential X2 can be
explicitly rewritten in the form:

Proposition 13. The set ð _u; _r; _v2; _p; _a2Þ is a solution of the saddle problem:
min
_u; _p

max
_r;v2; _a2

L1ð _u; _r; _v2; _p; _a2Þ
subject to the conditions _u 2 L and ðð _r; _pÞÞ � ðð _v2; _a2ÞÞ6 0 where
L1ð _u; _r; _v2; _p; _a2Þ ¼ 1
2
ððEðB _u� _pÞ;B _u� _pÞÞ þ 1

2
ððH2 _a2; _a2ÞÞ þ ðð _r; _pÞÞ � ðð _v2; _a2ÞÞ � h _‘; _ui ð48Þ
if and only if it is a solution of the nonlocal elastoplastic structural rate model proposed in Borino et al. (1999).

In Borino et al. (1999) the expressions ððH2 _a2; _a2ÞÞ and ðð _v2; _a2ÞÞ, appearing in L1, are provided in terms

of the nonlocal variable n and of its dual local variable v. Actually, recalling (2) and the equality

H2 ¼ R0d2UNLðnÞR, we have
ððH2 _a2; _a2ÞÞ ¼ ððR0 d2UNLðnÞR _a2; _a2ÞÞ ¼ ððd2UNLðnÞ _n; _nÞÞ;

ðð _v2; _a2ÞÞ ¼ ððR0 _v; _a2ÞÞ ¼ ðð _v; _nÞÞ

so that the Proposition 13 coincides with the corresponding one reported in Borino et al. (1999).

The kinematic-type variational principle reported in Borino et al. (1999) can be obtained from Propo-

sition 10. In fact evaluating the expression (44) it turns out to be
W ðB _u; kÞ ¼ 1
2
ððEðB _u� kdgðrÞÞ;B _u� kdgðrÞÞÞ þ 1

2
ððH2k; kÞÞ ð49Þ
subject to kP 0 if Gðr;X Þ ¼ 0 or k ¼ 0 if Gðr;X Þ < 0. Hence we have:

Proposition 14. A pair ð _u; kÞ is a solution of the concave optimization problem:
min
_u;k

L2ð _u; kÞ
under the conditions _u 2 L, kP 0 if Gðr;X Þ ¼ 0 or k ¼ 0 if Gðr;X Þ < 0, where
L2ð _u; kÞ ¼ 1
2
ððEðB _u� kdgðrÞÞ;B _u� kdgðrÞÞÞ þ 1

2
ððd2UNLðnÞRk;RkÞÞ � h _‘; _ui ð50Þ
if and only if it is a solution of the nonlocal elastoplastic structural rate model proposed in Borino et al. (1999).

Let us now show that Proposition 10 can be specialized to an analogous principle proposed by M€uhlhaus
and Aifantis (1991) for gradient plasticity, see also e.g. de Borst and M€uhlhaus (1992); Fleck and
Hutchinson (2001). To this end the generalized vectors are defined by
e ¼ e
0

� �
; e ¼ e

a2

� �
; p ¼ p

�a2

� �
; r ¼ r

v2

� �
ð51Þ
so that the expression (44) turns out to be:
W ðB _u; kÞ ¼ 1
2
ððEðB _u� kdgðrÞÞ;B _u� kdgðrÞÞÞ þ 1

2
ððH2k; kÞÞ þ 1

2
ððHk; kÞÞ ð52Þ
subject to kP 0 if Gðr;X Þ ¼ 0 or k ¼ 0 if Gðr;X Þ < 0. Noting that ððH2k; kÞÞ ¼ ððcd2UNLðnÞrk; crkÞÞ we
have
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Proposition 15. A pair ð _u; kÞ is a solution of the convex optimization problem:
min
_u;k

Gð _u; kÞ
under the conditions _u 2 L, kP 0 if Gðr;X Þ ¼ 0 or k ¼ 0 if Gðr;X Þ < 0, where
Gð _u; kÞ ¼ 1
2
ððEðB _u� kdgðrÞÞ;B _u� kdgðrÞÞÞ þ 1

2
ððH2k; kÞÞ þ 1

2
ððHk; kÞÞ � h _‘; _ui ð53Þ
if and only if it is a solution of the gradient elastoplastic structural rate model.

In order to explicitly prove that the stationarity of G is equivalent to the rate gradient model, we note
that the stationarity of G is
ð0; 0Þ 2 oGð _u; kÞ () 0 2 o _uGð _u; kÞ () B0EðB _u� kdgðrÞÞ ¼ _‘;
0 2 okGð _u; kÞ () 0 2 �½dgðrÞ�0EðB _u� kdgðrÞÞ þ H2kþHkþ o tRþ ðkÞ:

�
ð54Þ
The relation (54)1 provides the stress rate _r ¼ EðB _u� kdgðrÞÞ which turns out to be in equilibrium with the
external load rate _‘, i.e. B0 _r ¼ _‘. The relation (54)2 yields Prager’s consistency condition:
ðð _r; kdgðrÞÞÞ � ðð _v2; kÞÞ � ðð _X ; kÞÞ ¼ 0; ð55Þ
where _v2 ¼ H2k, _X ¼ Hk and the conditions kP 0 and Gð _r; _X Þ ¼ ½dgðrÞ�0EðB _u� kdgðrÞÞ � H2k�Hk6 0.
The functional G can be rewritten for the Cauchy model in the following form:
Gð _u; kÞ ¼ 1

2

Z
X
EðB _u� kdgðrÞÞ � ðB _u� kdgðrÞÞdxþ 1

2

Z
X
c2 dvðnÞrk � rkdxþ 1

2

Z
X
Hk2 dx� h _‘; _ui
and the expression (55)
Z
X
EðB _u� kdgðrÞÞ � kdgðrÞdx�

Z
X
c2 dvðnÞrk � rkdx�

Z
X
Hk � kdx ¼ 0 ð56Þ
provides the Prager’s consistency condition.
6. Conclusion

A nonlocal and gradient model of plasticity is presented and is cast in the framework of convex analysis

and of the potential theory for monotone multivalued operators. As a consequence a theoretical analysis
can be performed in analogy with local standard plasticity and variational formulations for the rate

constitutive model are contributed. The rate nonlocal and gradient structural problem is then formulated

and the related variational formulations are provided. It is shown that nonlocal and gradient models and

related variational formulations, recently contributed in the literature, can be recovered as a special case of

the present model. The proposed treatment of plasticity is rather general and can be applied to further

different material behaviours which can be described within the theory of internal variables such as damage

and rate-dependent plasticity.

A discussion of approximation methods and of finite-step nonlocal and gradient plasticity deserves
further analysis and will be the subject of a forthcoming paper.
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Appendix A

For simplicity we collect local and nonlocal variables in the vectors e
v
¼ ½ e 0 �T, e

v
¼ ½ e j �T,

p
v

¼ ½ p j �T, r
v
¼ ½ r X �T and we define the dual spaces D

v
¼ bD �Y andS

v
¼ cS �Y0. The relevant scalar

product is denoted by the symbol � �; � 	 defined as � r
v
; e
v
	¼ ððr; eÞÞ þ ððX ; jÞÞ ¼ ððr; eÞÞ þ ððv1; a1ÞÞþ

ððv2; a2ÞÞ þ ððX ;jÞÞ.

• Let us prove the equality tNð _p
v

Þ ¼ t�
Tð _p

v

Þ. By definition of support functional we have
t�
Tð _p

v

Þ ¼ supf� s
v
; _p
v

	 js
v
2 Tg:
If _p
v

2 N we have � s
v
; _p
v

	 6 0 for any s
v
2 T and if _p

v

62 N, there exists a s
v
2 T such that � s

v
; _p
v

	> 0.
Accordingly we have the result
t�
Tð _p

v

Þ ¼
0 if _p

v

2 N;

þ1 if _p
v

62 N;

8<: ¼ tNð _p
v

Þ:
• Let us now prove the expression (43) for the tangent cone to the elastic domain C at the point r
v
. The

tangent cone to the elastic domain C at the point r
v
can be written in the following form:
T ¼
f _r
v
2 S

v
j _Gðr

v
Þ ¼� _r

v
; dGðr

v
Þ 	 6 0 if Gðr

v
Þ ¼ 0;

S
v

if Gðr
v
Þ < 0

(

so that the indicator of the cone T becomes
tTð _r
v
Þ ¼

tR� ½� _r
v
; dGðr

v
Þ 	� if Gðr

v
Þ ¼ 0

tS
v

ð _r
v
Þ if Gðr

v
Þ < 0:

8<: ðA:1Þ
A pair ð _p
v

; _r
v
Þ, which satisfies the rate flow rule (24), fulfils one of the following two relations:
ðiÞ _p
v

2 o tR� ½� _r
v
; dGðr

v
Þ 	�dGðr

v
Þ ¼ kdGðr

v
Þ with k 2 o tR� ½� _r

v
; dGðr

v
Þ 	� if Gðr

v
Þ ¼ 0;

ðiiÞ _p
v

2 o tS
v

ð _r
v
Þ if Gðr

v
Þ < 0:

ðA:2Þ
By means of Fenchel’s equality, the constraint condition k 2 o tR� ½dGðr
v
Þ _r
v
� can be equivalently written in

the form tR� ½� _r
v
; dGðr

v
Þ 	� þ tRþðkÞ ¼� _r

v
; kdGðr

v
Þ 	. Accordingly the expression (A.1) of the indicator of

T becomes
tTð _r
v
; kÞ ¼

� _r
v
; kdGðr

v
Þ 	 � tRþ ðkÞ if Gðr

v
Þ ¼ 0;

tS
v

ð _r
v
Þ if Gðr

v
Þ < 0:

8<:
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Appendix B

Let us now prove Proposition 2. To this end the rate flow rule (27)2 is inverted by considering the

equivalent expression (24)2 and the rate elastic relation (27)3 is rewritten in the equivalent form (29)4.

Recalling that tN ¼ t�
T, the operator form of the constitutive relations (27) is given by
o
o
0

o
0

266664
377775 2 C

_r
_e
_X
_p
_j

266664
377775þ

_e
o
0

o
0

266664
377775
with
C ¼

0 �IbD 0 �IbD 0

�IbS 0 0

dN�

0 0 �IY
�IbS 0 0

o tN

0 0 �IY0

26666666664

37777777775
;

where C is the multivalued constitutive operator. The operator C can be split in a linear symmetric operator,
and hence conservative (Vainberg, 1964), and in the multivalued operator otN which is conservative by

virtue of the integral theorem (Romano et al., 1993).

The potential R can then be evaluated by a direct integration along a straight line in the spacecS � bD �Y0 � bD �Y to get
Rð _r; _e; _X ; _p; _jÞ ¼ �
Z 1

0

�
ð _r; _eþ _pÞ

�
dt þ

Z 1

0

��
dN�ð _e; _X Þ; ð _e; _X ÞÞÞdt

�
Z 1

0

ðð _X ; _jÞÞdt þ tNð _p; _jÞ þ ðð _r; _eÞÞ
and the expression (31) is obtained.

Appendix C

Some basic elements of convex analysis which have been referred to in the paper are reported. For more

details see e.g. Hiriart-Urruty and Lemarechal (1993).

Let X and X0 be a pair of locally convex topological vector spaces placed in separating duality by a

bilinear form h�; �i.
The conjugate of a convex functional f : X ! R [ fþ1g is the convex closed functional

f � : X0 ! R [ fþ1g defined by
f �ðx�Þ ¼ sup
y2X

fhx�; yi � f ðyÞg:
If f is closed we have f �� ¼ f .
Given a set K 
 X, the indicator of K at a point x 2 X is defined as follows:
tKðxÞ ¼
0 if x 2 K;
þ1 otherwise:

�
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The normal cone to a convex set K at a point x is
NKðxÞ ¼
fx� 2 X0 : hx�; y � xi6 0 8y 2 Xg if x 2 K;
; otherwise:

�

The tangent cone to a convex set K at a point x is given by
TKðxÞ ¼ fy 2 X : hx�; yi6 0 8x� 2 NKðxÞg:
If x belong to the interior of K, the tangent cone coincides with the whole space X and y is arbitrary. On the

contrary if x belongs to the boundary of K, the tangent cone turns out to be a proper subset of X.

Given a set K � X, the support functional of K at a point x� 2 X0 is defined as:
Dðx�Þ ¼ sup
y2K

hx�; yi:
The subdifferential of a convex functional f : X ! R [ fþ1g, having a nonempty domain, is the set

of ðxÞ � X0 such that:
x� 2 of ðxÞ () f ðyÞ � f ðxÞP hx�; y � xi 8y 2 X:
In particular, if the functional f is differentiable at x, the subdifferential coincides with the differential.

Given a closed convex conjugate functional f and its conjugate f �, the following relations are equivalent:
x� 2 of ðxÞ x 2 of �ðx�Þ f ðxÞ þ f �ðx�Þ ¼ hx�; xi;
where the last relation is known as the Fenchel’s equality.

The subdifferential of the indicator functional of a convex set K at a point x 2 K coincides with the

normal cone to K at x, i.e. o tK ðxÞ ¼ NKðxÞ. The support and the indicator functionals of a convex set K are

conjugate so that the following relations hold:
x� 2 o tK ðxÞ ¼ NKðxÞ x 2 oDðx�Þ tK ðxÞ þ Dðx�Þ ¼ hx�; xi:
Given a monotone convex function m : R ! R [ fþ1g and a continuous convex functional
f : X ! R [ fþ1g, the functional ðmf Þ is convex and its subdifferential at a point x 2 X, which is not a

minimum for f , is given by
oðm � f ÞðxÞ ¼ om½f ðxÞ�of ðxÞ:
Analogous results hold for concave functionals.
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